結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | momohara |
提出日時 | 2020-05-30 00:30:39 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,373 bytes |
コンパイル時間 | 2,254 ms |
コンパイル使用メモリ | 184,644 KB |
実行使用メモリ | 15,540 KB |
最終ジャッジ日時 | 2024-11-06 09:55:59 |
合計ジャッジ時間 | 8,668 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
15,540 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | TLE | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i,m,n) for(int (i)=(int)(m);i<(int)(n);++i) #define rep2(i,m,n) for(int (i)=(int)(n)-1;i>=(int)(m);--i) #define REP(i,n) rep(i,0,n) #define REP2(i,n) rep2(i,0,n) #define FOR(i,c) for(decltype((c).begin())i=(c).begin();i!=(c).end();++i) #define all(hoge) (hoge).begin(),(hoge).end() #define en '\n' using ll = long long; using ull = unsigned long long; template <class T> using vec = vector<T>; template <class T> using vvec = vector<vec<T>>; typedef pair<ll, ll> P; constexpr long long INF = 1LL << 60; constexpr int INF_INT = 1 << 25; //constexpr long long MOD = (ll) 1e9 + 7; constexpr long long MOD = 998244353LL; using ld=long double; static const ld pi = 3.141592653589793L; typedef vector<ll> Array; typedef vector<Array> Matrix; template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } struct Edge { ll to, rev; long double cap; Edge(ll _to, long double _cap, ll _rev) { to = _to; cap = _cap; rev = _rev; } }; using Edges = vector<Edge>; using Graph = vector<Edges>; void add_edge(Graph& G, ll from, ll to, long double cap, bool revFlag, long double revCap) { G[from].push_back(Edge(to, cap, (ll)G[to].size())); if (revFlag)G[to].push_back(Edge(from, revCap, (ll)G[from].size() - 1)); } ll mod_pow(ll x, ll n, ll mod) { ll res = 1LL; while (n > 0) { if (n & 1) res = res * x % mod; x = x * x % mod; n >>= 1; } return res; } ll mod_inv(ll x, ll mod) { return mod_pow(x, mod - 2, mod); } ll _garner(Array& xs, Array& mods) { int M = xs.size(); Array coeffs(M, 1), constants(M, 0); for (int i = 0; i < M - 1; ++i) { ll mod_i = mods[i]; // coffs[i] * v + constants[i] == mr[i].val (mod mr[i].first) ������ ll v = (xs[i] - constants[i] + mod_i) % mod_i; v = (v * mod_pow(coeffs[i], mod_i - 2, mod_i)) % mod_i; for (int j = i + 1; j < M; j++) { ll mod_j = mods[j]; constants[j] = (constants[j] + coeffs[j] * v) % mod_j; coeffs[j] = (coeffs[j] * mod_i) % mod_j; } } return constants.back(); } template<typename T> inline void bit_reverse(vector<T>& a) { int n = a.size(); int i = 0; for (int j = 1; j < n - 1; ++j) { for (int k = n >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(a[i], a[j]); } } template<long long mod, long long primitive_root> class NTT { public: long long get_mod() { return mod; } void _ntt(vector<long long>& a, int sign) { const int n = a.size(); assert((n ^ (n & -n)) == 0); //n = 2^k const long long g = primitive_root; // g is primitive root of mod long long tmp = (mod - 1) * mod_pow(n, mod - 2, mod) % mod; // -1/n long long h = mod_pow(g, tmp, mod); // ^n��g if (sign == -1) h = mod_pow(h, mod - 2, mod); bit_reverse(a); for (int m = 1; m < n; m <<= 1) { const int m2 = 2 * m; long long _base = mod_pow(h, n / m2, mod); long long _w = 1; for (int x = 0; x < m; ++x) { for (int s = x; s < n; s += m2) { long long u = a[s]; long long d = (a[s + m] * _w) % mod; a[s] = (u + d) % mod; a[s + m] = (u - d + mod) % mod; } _w = (_w * _base) % mod; } } } void ntt(vector<long long>& input) { _ntt(input, 1); } void intt(vector<long long>& input) { _ntt(input, -1); const long long n_inv = mod_pow(input.size(), mod - 2, mod); for (auto& x : input) x = (x * n_inv) % mod; } //畳み込み演算を行う vector<long long> convolution(const vector<long long>& a, const vector<long long>& b) { int result_size = a.size() + b.size() - 1; int n = 1; while (n < result_size) n <<= 1; vector<long long> _a = a, _b = b; _a.resize(n, 0); _b.resize(n, 0); ntt(_a); ntt(_b); for (int i = 0; i < n; ++i) _a[i] = (_a[i] * _b[i]) % mod; intt(_a); _a.resize(result_size); return _a; } }; vector<long long> convolution_ntt(vector<long long>& a, vector<long long>& b, long long mod = 1224736769LL) { for (auto& x : a) x %= mod; for (auto& x : b) x %= mod; ll maxval = max(a.size(), b.size()) * *max_element(a.begin(), a.end()) * *max_element(b.begin(), b.end()); if (maxval < 1224736769) { NTT<1224736769, 3> ntt3; return ntt3.convolution(a, b); } NTT<167772161, 3> ntt1; NTT<469762049, 3> ntt2; NTT<1224736769, 3> ntt3; vector<long long> x1 = ntt1.convolution(a, b); vector<long long> x2 = ntt2.convolution(a, b); vector<long long> x3 = ntt3.convolution(a, b); vector<long long> ret(x1.size()); vector<long long> mods{ 167772161, 469762049, 1224736769, mod }; for (int i = 0; i < x1.size(); ++i) { vector<long long> xs{ x1[i], x2[i], x3[i], 0 }; ret[i] = _garner(xs, mods); } return ret; } void solve(){ ll n,q; cin>>n>>q; Array a(n),b(q); REP(i,n) cin>>a[i]; REP(i,q) cin>>b[i]; auto solve = [&](auto && self,int l, int r)->vec<ll>{ if(r-l==1) return vec<ll>({a[l]-1,1}); int m=l+r>>1; auto L = self(self,l,m); auto R = self(self,m,r); return convolution_ntt(L, R, MOD); }; auto result = solve(solve,0,n); REP(i,q){ cout<<result[b[i]]<<en; } } int main() { ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); solve(); //ll t;cin>>t;REP(i,t) solve(); return 0; }