結果
| 問題 |
No.1065 電柱 / Pole (Easy)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-05-30 13:38:45 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 296 ms / 2,000 ms |
| コード長 | 6,270 bytes |
| コンパイル時間 | 3,332 ms |
| コンパイル使用メモリ | 218,860 KB |
| 最終ジャッジ日時 | 2025-01-10 19:20:46 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 46 |
ソースコード
#include <bits/stdc++.h>
const long long INF = 1LL << 60;
const long long MOD = 1000000007;
const double PI = acos(-1.0);
#define rep(i, n) for (ll i = 0; i < (n); ++i)
#define rep1(i, n) for (ll i = 1; i <= (n); ++i)
#define rrep(i, n) for (ll i = (n - 1); i >= 0; --i)
#define perm(c) sort(ALL(c));for(bool c##p=1;c##p;c##p=next_permutation(ALL(c)))
#define ALL(obj) (obj).begin(), (obj).end()
#define RALL(obj) (obj).rbegin(), (obj).rend()
#define pb push_back
#define to_s to_string
#define len(v) (ll)v.size()
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define print(x) cout << (x) << '\n'
#define drop(x) cout << (x) << '\n', exit(0)
#define debug(x) cout << #x << ": " << (x) << '\n'
using namespace std;
using ll = long long;
typedef pair<ll, ll> P;
typedef vector<ll> vec;
typedef vector<vector<ll>> vec2;
typedef vector<vector<vector<ll>>> vec3;
template<class S, class T> inline bool chmax(S &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class S, class T> inline bool chmin(S &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
inline ll msb(ll v) { return 1 << (31 - __builtin_clzll(v)); }
inline ll devc(ll x, ll y) { return (x + y - 1) / y; }
inline ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll lcm(ll a, ll b) { return a * (b / gcd(a, b)); }
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator << (ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator >> (istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T1, typename T2, typename T3 >
ostream &operator << (ostream &os, const tuple< T1, T2, T3 > &t) {
os << get<0>(t) << " " << get<1>(t) << " " << get<2>(t);
return os;
}
template< typename T1, typename T2, typename T3 >
istream &operator >> (istream &is, tuple< T1, T2, T3 > &t) {
is >> get<0>(t) >> get<1>(t) >> get<2>(t);
return is;
}
template< typename T >
ostream &operator << (ostream &os, const vector< T > &v){
for (int i = 0; i < (int)v.size(); ++i) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator >> (istream &is, vector< T > &v){
for(T &in : v) is >> in;
return is;
}
/*--------------------------------- Tools ------------------------------------------*/
template< typename T >
vector<T> cumsum(const vector<T> &X){
vector<T> res(X.size() + 1, 0);
for(int i = 0; i < X.size(); ++i) res[i + 1] += res[i] + X[i];
return res;
}
template< typename S, typename T, typename F>
pair<T, T> bisearch(S left, T right, F f) {
while(abs(right - left) > 1){
T mid = (right + left) / 2;
if(f(mid)) right = mid;
else left = mid;
}
return {left, right};
}
template< typename S, typename T, typename F>
double trisearch(S left, T right, F f, int maxLoop = 90){
double low = left, high = right;
while(maxLoop--){
double mid_left = high / 3 + low * 2 / 3;
double mid_right = high * 2 / 3 + low / 3;
if(f(mid_left) >= f(mid_right)) low = mid_left;
else high = mid_right;
}
return (low + high) * 0.5;
}
template< typename F >
ll ternarySearch(ll L, ll R, F f) { //[L, R)
ll lo = L - 1, hi = R - 1;
while (lo + 1 != hi) {
ll mi = (lo + hi) / 2;
if (f(mi) <= f(mi + 1)) hi = mi;
else lo = mi;
}
return hi;
}
/*--------------------------------- Graph ------------------------------------------*/
struct Edge {
ll from, to;
double weight;
Edge() : from(0), to(0), weight(0) {}
Edge(ll f, ll t, double w) : from(f), to(t), weight(w) {}
};
using Edges = vector<Edge>;
using Graph = vector<Edges>;
void add_edge(Graph &g, ll a, ll b, double w){
g[a].emplace_back(a, b, w);
g[b].emplace_back(b, a, w);
}
void add_arrow(Graph &g, ll a, ll b, double w){
g[a].emplace_back(a, b, w);
}
template< typename T >
vector<T> dijkstra(Graph &g, T s, bool restore = false){
vector<T> dist(g.size(), INF);
priority_queue<pair<T, T>, vector<pair<T, T>>, greater<pair<T, T>>> que;
dist[s] = 0;
que.emplace(dist[s], s);
vector<T> prev(g.size(), -1);
while(!que.empty()){
T cost, idx;
tie(cost, idx) = que.top();
que.pop();
if(dist[idx] < cost) continue;
for(auto &e : g[idx]){
auto next_cost = cost + e.weight;
if(dist[e.to] <= next_cost) continue;
dist[e.to] = next_cost;
if(restore) prev[e.to] = e.from;
que.emplace(dist[e.to], e.to);
}
}
if(restore) return prev;
return dist;
}
vector<ll> shortest_path(Graph &g, ll start, ll goal){
vector<ll> prev = dijkstra(g, start, true);
vector<ll> path;
for (int cur = goal; cur != -1; cur = prev[cur]) path.push_back(cur);
reverse(path.begin(), path.end());
return path;
}
vector<ll> topological_sort(Graph &G){
vector<ll> ls;
vector<ll> visited(G.size(), false);
auto topo_sort = [&](auto &&self, Graph &g, ll s = 0LL) -> void {
if (visited[s]) return;
visited[s] = true;
for (auto &&e : g[s]) if (!visited[e.to]) self(self, g, e.to);
ls.pb(s);
};
for (int i = 0; i < G.size(); ++i) topo_sort(topo_sort, G, i);
reverse(ALL(ls));
return ls;
}
/*------------------------------- Main Code Here -----------------------------------------*/
int main()
{
ll N, M, X, Y;
cin >> N >> M >> X >> Y;
--X, --Y;
Graph G(N);
vector<P> plot(N);
cin >> plot;
auto f = [&](P p, P q)->double{
auto [x1, y1] = p;
auto [x2, y2] = q;
double dx = x2 - x1, dy = y2 - y1;
return sqrt(dx * dx + dy * dy);
};
rep(i, M){
ll P, Q;
cin >> P >> Q;
--P, --Q;
double dis = f(plot[P], plot[Q]);
add_edge(G, P, Q, dis);
}
vector<double> dist = dijkstra(G, double(X));
print(dist[Y]);
return 0;
}