結果
| 問題 |
No.1069 電柱 / Pole (Hard)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-06-04 23:00:05 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,074 bytes |
| コンパイル時間 | 3,436 ms |
| コンパイル使用メモリ | 240,752 KB |
| 最終ジャッジ日時 | 2025-01-10 21:28:36 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 41 WA * 38 |
ソースコード
#include <bits/stdc++.h>
#ifdef DEBUG
#include <Mylib/Debug/debug.cpp>
#else
#define dump(...)
#endif
/**
* @title グラフ用テンプレート
* @docs graph_template.md
*/
template <typename Cost = int> class Edge{
public:
int from,to;
Cost cost;
Edge() {}
Edge(int to, Cost cost): to(to), cost(cost){}
Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}
};
template <typename T> using Graph = std::vector<std::vector<Edge<T>>>;
template <typename T> using Tree = std::vector<std::vector<Edge<T>>>;
template <typename T, typename C> void add_edge(C &g, int from, int to, T w = 1){
g[from].emplace_back(from, to, w);
}
template <typename T, typename C> void add_undirected(C &g, int a, int b, T w = 1){
add_edge<T, C>(g, a, b, w);
add_edge<T, C>(g, b, a, w);
}
/**
* @docs input_tuple_vector.md
*/
template <typename T, size_t ... I>
void input_tuple_vector_init(T &val, int N, std::index_sequence<I...>){
(void)std::initializer_list<int>{
(void(std::get<I>(val).resize(N)), 0)...
};
}
template <typename T, size_t ... I>
void input_tuple_vector_helper(T &val, int i, std::index_sequence<I...>){
(void)std::initializer_list<int>{
(void(std::cin >> std::get<I>(val)[i]), 0)...
};
}
template <typename ... Args>
auto input_tuple_vector(int N){
std::tuple<std::vector<Args>...> ret;
input_tuple_vector_init(ret, N, std::make_index_sequence<sizeof...(Args)>());
for(int i = 0; i < N; ++i){
input_tuple_vector_helper(ret, i, std::make_index_sequence<sizeof...(Args)>());
}
return ret;
}
template <typename T>
struct YenAlgorithm{
Graph<T> g;
int s, t, K, N;
std::vector<std::vector<bool>> valid;
using Path = std::pair<T, std::vector<int>>;
std::vector<std::optional<Path>> result;
std::priority_queue<Path, std::vector<Path>, std::greater<Path>> stock;
YenAlgorithm(Graph<T> g, int s, int t, int K): g(g), s(s), t(t), K(K), N(g.size()){run();}
void run(){
valid.resize(N);
for(int i = 0; i < N; ++i){
valid[i].assign(g[i].size(), true);
}
result.resize(K);
for(int i = 0; i < K; ++i){
if(i == 0){
auto res = shortest_path(s);
if(res){
stock.push(*res);
}
}else{
std::vector<int> prev_path;
{
int cur = s;
for(auto u : result[i-1].value().second){
prev_path.push_back(cur);
cur = g[cur][u].to;
}
prev_path.push_back(t);
dump(prev_path);
}
std::vector<bool> check(i, true);
for(int k = 0; k < (int)prev_path.size() - 1; ++k){
const int u = prev_path[k];
for(int j = 0; j < i; ++j){
if(check[j]){
valid[prev_path[k]][(*result[j]).second[k]] = false;
}
}
dump(check, valid[prev_path[k]]);
auto res = shortest_path(u);
dump(res);
if(res){
auto [c, p] = *res;
std::vector<int> temp;
for(int j = 0; j < k; ++j){
int v = (*result[i-1]).second[j];
c += g[prev_path[j]][v].cost;
temp.push_back(v);
}
temp.insert(temp.end(), p.begin(), p.end());
//std::swap(temp, p);
stock.emplace(c, temp);
}
for(int j = 0; j < i; ++j){
if(check[j]){
valid[prev_path[k]][(*result[j]).second[k]] = true;
}
}
for(int j = 0; j < i; ++j){
if(check[j]){
if(prev_path[k+1] != g[prev_path[k]][(*result[j]).second[k]].to){
check[j] = false;
}
}
}
}
}
std::cerr << "\n";
if(stock.empty()) break;
result[i] = stock.top(); stock.pop();
}
}
std::optional<std::pair<T, std::vector<int>>> shortest_path(int from){
std::vector<bool> visited(N, false);
std::vector<std::optional<T>> dist(N);
std::vector<std::pair<int, int>> restore(N);
std::priority_queue<
std::pair<T, int>,
std::vector<std::pair<T, int>>,
std::greater<std::pair<T, int>>> pq;
dist[from] = 0;
pq.emplace(0, from);
while(not pq.empty()){
auto [d, i] = pq.top(); pq.pop();
if(visited[i]) continue;
visited[i] = true;
for(int k = 0; k < (int)g[i].size(); ++k){
if(not valid[i][k]) continue;
auto &e = g[i][k];
if(not dist[e.to]){
dist[e.to] = d + e.cost;
pq.emplace(*dist[e.to], e.to);
restore[e.to] = std::make_pair(i, k);
}else{
if(*dist[e.to] > d + e.cost){
dist[e.to] = d + e.cost;
if(not visited[e.to]) pq.emplace(*dist[e.to], e.to);
restore[e.to] = std::make_pair(i, k);
}
}
}
}
if(dist[t]){
std::vector<int> p;
int cur = t;
while(cur != from){
auto [i, j] = restore[cur];
p.push_back(j);
cur = i;
}
std::reverse(p.begin(), p.end());
return {std::make_pair(*dist[t], p)};
}else{
return {};
}
}
};
int main(){
int N, M, K; std::cin >> N >> M >> K;
int X, Y; std::cin >> X >> Y;
--X, --Y;
auto [p, q] = input_tuple_vector<double, double>(N);
Graph<double> g(N);
for(int i = 0; i < M; ++i){
int P, Q; std::cin >> P >> Q;
--P, --Q;
double dx = p[P] - p[Q];
double dy = q[P] - q[Q];
double L = std::sqrt(dx * dx + dy * dy);
add_undirected(g, P, Q, L);
}
auto res = YenAlgorithm(g, X, Y, K).result;
/*
std::cerr << "\n";
for(auto a : res){
std::vector<int> p;
int cur = X;
for(auto u : a->second){
p.push_back(cur);
cur = g[cur][u].to;
}
p.push_back(Y);
dump(p);
}
dump(res);*/
for(auto x : res){
if(not x){
std::cout << -1 << "\n";
}else{
std::cout << std::fixed << std::setprecision(12) << x->first << "\n";
}
}
return 0;
}