結果
| 問題 | No.1069 電柱 / Pole (Hard) | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2020-06-04 23:47:43 | 
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 296 ms / 2,000 ms | 
| コード長 | 6,452 bytes | 
| コンパイル時間 | 6,923 ms | 
| コンパイル使用メモリ | 242,652 KB | 
| 最終ジャッジ日時 | 2025-01-10 21:29:30 | 
| ジャッジサーバーID (参考情報) | judge2 / judge1 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 4 | 
| other | AC * 79 | 
ソースコード
#include <bits/stdc++.h>
#ifdef DEBUG
#include <Mylib/Debug/debug.cpp>
#else
#define dump(...)
#endif
/**
 * @title グラフ用テンプレート
 * @docs graph_template.md
 */
template <typename Cost = int> class Edge{
public:
  int from,to;
  Cost cost;
  Edge() {}
  Edge(int to, Cost cost): to(to), cost(cost){}
  Edge(int from, int to, Cost cost): from(from), to(to), cost(cost){}
};
template <typename T> using Graph = std::vector<std::vector<Edge<T>>>;
template <typename T> using Tree = std::vector<std::vector<Edge<T>>>;
template <typename T, typename C> void add_edge(C &g, int from, int to, T w = 1){
  g[from].emplace_back(from, to, w);
}
template <typename T, typename C> void add_undirected(C &g, int a, int b, T w = 1){
  add_edge<T, C>(g, a, b, w);
  add_edge<T, C>(g, b, a, w);
}
/**
 * @docs input_tuple_vector.md
 */
template <typename T, size_t ... I>
void input_tuple_vector_init(T &val, int N, std::index_sequence<I...>){
  (void)std::initializer_list<int>{
    (void(std::get<I>(val).resize(N)), 0)...
      };
}
template <typename T, size_t ... I>
void input_tuple_vector_helper(T &val, int i, std::index_sequence<I...>){
  (void)std::initializer_list<int>{
    (void(std::cin >> std::get<I>(val)[i]), 0)...
      };
}
template <typename ... Args>
auto input_tuple_vector(int N){
  std::tuple<std::vector<Args>...> ret;
  input_tuple_vector_init(ret, N, std::make_index_sequence<sizeof...(Args)>());
  for(int i = 0; i < N; ++i){
    input_tuple_vector_helper(ret, i, std::make_index_sequence<sizeof...(Args)>());
  }
  return ret;
}
template <typename T>
struct YenAlgorithm{
  Graph<T> g;
  int s, t, K, N;
  std::vector<std::vector<bool>> valid;
  using Path = std::pair<T, std::vector<int>>;
  std::vector<std::optional<Path>> result;
  std::priority_queue<Path, std::vector<Path>, std::greater<Path>> stock;
  
  YenAlgorithm(Graph<T> g, int s, int t, int K): g(g), s(s), t(t), K(K), N(g.size()){run();}
  void run(){
    valid.resize(N);
    for(int i = 0; i < N; ++i){
      valid[i].assign(g[i].size(), true);
    }
    result.resize(K);
    for(int i = 0; i < K; ++i){
      if(i == 0){
        std::vector<bool> usable(N, true);
        auto res = shortest_path(s, usable);
        if(res){
          stock.push(*res);
        }
      }else{
        std::vector<int> prev_path;
        {
          int cur = s;
          for(auto u : result[i-1].value().second){
            prev_path.push_back(cur);
            cur = g[cur][u].to;
          }
          prev_path.push_back(t);
          dump(prev_path);
        }
        std::vector<bool> check(i, true);
        std::vector<bool> usable(N, true);
        for(int k = 0; k < (int)prev_path.size() - 1; ++k){
          const int u = prev_path[k];
          
          for(int j = 0; j < i; ++j){
            if(check[j]){
              valid[prev_path[k]][(*result[j]).second[k]] = false;
              //dump((*result[j]).second[k]);
            }
          }
          dump(u, check, valid[prev_path[k]]);
          if(auto res = shortest_path(u, usable); res){
            auto [c, p] = *res;
            std::vector<int> temp;
            for(int j = 0; j < k; ++j){
              int v = (*result[i-1]).second[j];
              c += g[prev_path[j]][v].cost;
              temp.push_back(v);
            }
            temp.insert(temp.end(), p.begin(), p.end());
            //std::swap(temp, p);
            dump(std::make_pair(c, temp));
            
            stock.emplace(c, temp);
          }
          usable[u] = false;
          for(int j = 0; j < i; ++j){
            if(check[j]){
              valid[prev_path[k]][(*result[j]).second[k]] = true;
            }
          }
          for(int j = 0; j < i; ++j){
            if(check[j]){
              if(prev_path[k+1] != g[prev_path[k]][(*result[j]).second[k]].to){
                check[j] = false;
              }
            }
          }
        }
      }
      std::cerr << "\n";
      if(stock.empty()) break;
      result[i] = stock.top(); stock.pop();
      while(not stock.empty() and stock.top() == result[i]){
        stock.pop();
      }
    }
  }
  std::optional<std::pair<T, std::vector<int>>> shortest_path(int from, const std::vector<bool> &usable){
    std::vector<bool> visited(N, false);
    std::vector<std::optional<T>> dist(N);
    std::vector<std::pair<int, int>> restore(N);
    std::priority_queue<
      std::pair<T, int>,
      std::vector<std::pair<T, int>>,
      std::greater<std::pair<T, int>>> pq;
    dist[from] = 0;
    pq.emplace(0, from);
    while(not pq.empty()){
      auto [d, i] = pq.top(); pq.pop();
      if(visited[i]) continue;
      visited[i] = true;
      for(int k = 0; k < (int)g[i].size(); ++k){
        if(not valid[i][k] or not usable[g[i][k].to]) continue;
        auto &e = g[i][k];
        if(not dist[e.to]){
          dist[e.to] = d + e.cost;
          pq.emplace(*dist[e.to], e.to);
          restore[e.to] = std::make_pair(i, k);
        }else{
          if(*dist[e.to] > d + e.cost){
            dist[e.to] = d + e.cost;
            if(not visited[e.to]) pq.emplace(*dist[e.to], e.to);
            restore[e.to] = std::make_pair(i, k);
          }
        }
      }
    }
    
    if(dist[t]){
      std::vector<int> p;
      int cur = t;
      while(cur != from){
        auto [i, j] = restore[cur];
        p.push_back(j);
        cur = i;
      }
      
      std::reverse(p.begin(), p.end());
      return {std::make_pair(*dist[t], p)};
    }else{
      return {}; 
    }
  }
};
int main(){
  int N, M, K; std::cin >> N >> M >> K;
  int X, Y; std::cin >> X >> Y;
  --X, --Y;
  auto [p, q] = input_tuple_vector<long double, long double>(N);
  Graph<long double> g(N);
  for(int i = 0; i < M; ++i){
    int P, Q; std::cin >> P >> Q;
    --P, --Q;
    long double dx = p[P] - p[Q];
    long double dy = q[P] - q[Q];
    long double L = std::sqrt(dx * dx + dy * dy);
    add_undirected(g, P, Q, L);
  }
  
  auto res = YenAlgorithm(g, X, Y, K).result;
  /*
  std::cerr << "\n";
  
  for(auto a : res){
    std::vector<int> p;
    int cur = X;
    for(auto u : a->second){
      p.push_back(cur);
      cur = g[cur][u].to;
    }
    p.push_back(Y);
    dump(p);
  }
  dump(res);*/
  
  
  for(auto x : res){
    if(not x){
      std::cout << -1 << "\n";
    }else{
      std::cout << std::fixed << std::setprecision(12) << x->first << "\n";
    }
  }
    
  return 0;
}
            
            
            
        