結果

問題 No.1073 無限すごろく
ユーザー gyouzasushigyouzasushi
提出日時 2020-06-05 21:47:44
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 63 ms / 2,000 ms
コード長 4,160 bytes
コンパイル時間 3,644 ms
コンパイル使用メモリ 202,568 KB
最終ジャッジ日時 2025-01-10 22:26:55
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define rrep(i, n) for (int i = (int)(n - 1); i >= 0; i--)
#define all(x) (x).begin(), (x).end()
#define sz(x) int(x.size())
#define get_unique(x) x.erase(unique(all(x)), x.end());
typedef long long ll;
typedef complex<double> Complex;
const int INF = 1e9;
const ll MOD = 1e9 + 7;
const ll LINF = 1e18;
template <class T>
bool chmax(T& a, const T& b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
bool chmin(T& a, const T& b) {
if (b < a) {
a = b;
return 1;
}
return 0;
}
template <class T>
vector<T> make_vec(size_t a) {
return vector<T>(a);
}
template <class T, class... Ts>
auto make_vec(size_t a, Ts... ts) {
return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
template <typename T>
ostream& operator<<(ostream& os, vector<T> v) {
for (int i = 0; i < sz(v); i++) {
os << v[i];
if (i < sz(v) - 1) os << " ";
}
return os;
}
struct modint {
ll x;
modint(ll x = 0) : x((x % MOD + MOD) % MOD) {
}
ll value() const {
return x;
}
modint operator-() const {
return modint(-x);
}
modint& operator+=(const modint a) {
if ((x += a.x) >= MOD) x -= MOD;
return *this;
}
modint& operator-=(const modint a) {
if ((x += MOD - a.x) >= MOD) x -= MOD;
return *this;
}
modint& operator*=(const modint a) {
(x *= a.x) %= MOD;
return *this;
}
modint operator+(const modint a) const {
modint res(*this);
return res += a;
}
modint operator-(const modint a) const {
modint res(*this);
return res -= a;
}
modint operator*(const modint a) const {
modint res(*this);
return res *= a;
}
modint pow(ll t) const {
if (t == 0) return 1;
modint a = pow(t >> 1);
a *= a;
if (t % 2 == 1) a *= *this;
return a;
}
modint inv() const {
return pow(MOD - 2);
}
modint& operator/=(const modint a) {
return (*this) *= a.inv();
}
modint operator/(const modint a) const {
modint res(*this);
return res /= a;
}
};
ostream& operator<<(ostream& os, const modint& x) {
os << x.value();
return os;
}
struct combination {
vector<modint> fact, ifact;
combination(int n) : fact(n + 1), ifact(n + 1) {
assert(n < MOD);
fact[0] = 1;
for (int i = 1; i <= n; i++) {
fact[i] = fact[i - 1] * i;
}
ifact[n] = fact[n].inv();
for (int i = n; i >= 1; i--) {
ifact[i - 1] = ifact[i] * i;
}
}
modint operator()(int n, int k) {
if (n < k || k < 0) return 0;
return fact[n] * ifact[k] * ifact[n - k];
}
modint h(int n, int k) {
n += k - 1;
if (k < 0 || k > n) return 0;
return fact[n] * ifact[k] * ifact[n - k];
}
} comb(2002002);
template <typename T>
vector<vector<T>> matmul(vector<vector<T>>& a, vector<vector<T>>& b) {
int n = sz(a), ma = sz(a[0]), mb = sz(b), p = sz(b[0]);
assert(ma == mb);
int m = ma;
vector<vector<T>> ret(n, vector<T>(p));
for (int i = 0; i < n; i++) {
for (int j = 0; j < p; j++) {
for (int k = 0; k < m; k++) {
ret[i][j] += a[i][k] * b[k][j];
}
}
}
return ret;
}
template <typename T>
vector<vector<T>> matpow(vector<vector<T>> mt, ll k) {
int n = sz(mt);
vector<vector<T>> ret(n);
for (int i = 0; i < n; i++) {
ret[i].resize(n);
ret[i][i] = 1;
}
vector<vector<T>> now = mt;
while (k) {
if (k & 1) ret = matmul(ret, now);
now = matmul(now, now);
k /= 2;
}
return ret;
}
int main() {
ll n;
cin >> n;
auto A = make_vec<modint>(6, 6);
modint k = modint(1) / 6;
rep(i, 6) A[0][i] = k;
rep(i, 5) A[i + 1][i] = 1;
auto B = make_vec<modint>(6, 1);
B[0][0] = 1;
A = matpow(A, n);
A = matmul(A, B);
cout << A[0][0] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0