結果

問題 No.1074 増殖
ユーザー KoDKoD
提出日時 2020-06-05 22:25:46
言語 C++17
(gcc 13.2.0 + boost 1.83.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 8,054 bytes
コンパイル時間 597 ms
コンパイル使用メモリ 75,652 KB
最終ジャッジ日時 2023-08-22 16:12:59
合計ジャッジ時間 1,205 ms
ジャッジサーバーID
(参考情報)
judge13 / judge11
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp:210:32: エラー: ‘numeric_limits’ is not a member of ‘std’
  210 |     value_type identity = std::numeric_limits<T>::min();
      |                                ^~~~~~~~~~~~~~
main.cpp:210:48: エラー: expected primary-expression before ‘>’ token
  210 |     value_type identity = std::numeric_limits<T>::min();
      |                                                ^
main.cpp:210:51: エラー: ‘::min’ has not been declared; did you mean ‘std::min’?
  210 |     value_type identity = std::numeric_limits<T>::min();
      |                                                   ^~~
      |                                                   std::min
次のファイルから読み込み:  /usr/local/gcc7/include/c++/12.2.0/algorithm:61,
         次から読み込み:  main.cpp:3:
/usr/local/gcc7/include/c++/12.2.0/bits/stl_algo.h:5736:5: 備考: ‘std::min’ declared here
 5736 |     min(initializer_list<_Tp> __l, _Compare __comp)
      |     ^~~

ソースコード

diff #

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>

template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
  if (lhs > rhs) { lhs = rhs; return true; }
  return false;
}

template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
  if (lhs < rhs) { lhs = rhs; return true; }
  return false;
}

struct range {
  using itr = int64_t;
  struct iterator {
    itr i;
    constexpr iterator(itr i_): i(i_) { }
    constexpr void operator ++ () { ++i; }
    constexpr itr operator * () const { return i; }
    constexpr bool operator != (iterator x) const { return i != x.i; }
  };
  const iterator l, r;
  constexpr range(itr l_, itr r_): l(l_), r(std::max(l_, r_)) { }
  constexpr iterator begin() const { return l; }
  constexpr iterator end() const { return r; }
};

struct revrange {
  using itr = int64_t;
  struct iterator {
    itr i;
    constexpr iterator(itr i_): i(i_) { }
    constexpr void operator ++ () { --i; }
    constexpr itr operator * () const { return i; }
    constexpr bool operator != (iterator x) const { return i != x.i; }
  };
  const iterator l, r;
  constexpr revrange(itr l_, itr r_): l(l_ - 1), r(std::max(l_, r_) - 1) { }
  constexpr iterator begin() const { return r; }
  constexpr iterator end() const { return l; }
};

template <class T>
class lazy_propagation_segment_tree {
public:
  using value_type = typename T::value_type;
  using effector_type = typename T::effector_type;

  static inline const auto op1 = typename T::value_operation();
  static inline const auto op2 = typename T::effector_operation();
  static inline const auto op3 = typename T::merge_operation();

private:
  int size, height;
  std::vector<value_type> node;
  std::vector<effector_type> lazy;

  value_type fetch(int i, int l) const {
    if (lazy[i] == op2.identity) return node[i];
    return op3(node[i], lazy[i], l);
  }

  void apply(int i, int l) {
    if (lazy[i] == op2.identity) return;
    if (i < size) {
      lazy[i << 1 | 0] = op2(lazy[i << 1 | 0], lazy[i]);
      lazy[i << 1 | 1] = op2(lazy[i << 1 | 1], lazy[i]);
    }
    node[i] = op3(node[i], lazy[i], l);
    lazy[i] = op2.identity;
  }
  void update() {
    for (int i = size - 1; i > 0; --i) {
      node[i] = op1(node[i << 1 | 0], node[i << 1 | 1]);
    }
  }

  void flush(int i) {
    for (int k = height; k >= 0; --k) {
      apply(i >> k, 1 << k);
    }
  }
  void lift(int i) {
    i >>= 1;
    int l = 1;
    while (i > 0) {
      node[i] = op1(fetch(i << 1 | 0, l), fetch(i << 1 | 1, l));
      i >>= 1;
      l <<= 1;
    }
  }

public:
  lazy_propagation_segment_tree() = default;
  lazy_propagation_segment_tree(int size_, const value_type &initial_ = op1.identity) { init(size_, initial_); }
  lazy_propagation_segment_tree(const std::vector<value_type> &node_) { build(node_); }

  void init(int size_, const value_type &initial_ = op1.identity) {
    size = 1; 
    height = 0;
    while (size < size_) {
      size <<= 1;
      ++height;
    }
    node.assign(size << 1, initial_);
    lazy.assign(size << 1, op2.identity);
    update();
  }
  void build(const std::vector<value_type> &node_) {
    init(node_.size());
    for (int i = 0; i < node_.size(); ++i) {
      node[i + size] = node_[i];
    }
    update();
  }

  void assign(int i, const value_type &x) {
    i += size;
    flush(i);
    node[i] = x;
    lift(i);
  }

  void modify(int l, int r, const effector_type &x) {
    if (l >= r) return;
    flush(l + size);
    flush(r + size - 1);
    int tl = l + size, tr = r + size, k = 1;
    while (tl < tr) {
      if (tl & 1) {
        lazy[tl] = op2(lazy[tl], x);
        apply(tl, k);
        ++tl;
      }
      if (tr & 1) {
        --tr;
        lazy[tr] = op2(lazy[tr], x);
        apply(tr, k);
      }
      tl >>= 1;
      tr >>= 1;
      k <<= 1;
    }
    lift(l + size);
    lift(r + size - 1);
  }

  value_type fold(int l, int r) {
    if (l >= r) return op1.identity;
    flush(l + size);
    flush(r + size - 1);
    int tl = l + size, tr = r + size, k = 1;
    value_type resl = op1.identity, resr = op1.identity;
    while (tl < tr) {
      if (tl & 1) {
        apply(tl, k);
        resl = op1(resl, node[tl]);
        ++tl;
      }
      if (tr & 1) {
        --tr;
        apply(tr, k);
        resr = op1(node[tr], resr);
      }
      tl >>= 1;
      tr >>= 1;
      k <<= 1;
    }
    return op1(resl, resr);
  }

};

template <class T>
struct range_sum_range_assign {
  using value_type = std::pair<T, T>;
  using effector_type = T;
  struct value_operation {
    value_type identity = std::make_pair(0, 0);
    value_type operator () (const value_type &x, const value_type &y) const {
      return { x.first + y.first, x.second + y.second }; 
    }
  };
  struct effector_operation {
    effector_type identity = 0;
    effector_type operator () (const effector_type, const effector_type &y) const {
      return y;
    }
  };
  struct merge_operation {
    value_type operator () (const value_type &x, const effector_type &y, int) const {
      return { y * x.second, x.second };
    }
  };
};

template <class T>
struct range_max_range_assign {
  using value_type = T;
  using effector_type = T;
  struct value_operation {
    value_type identity = std::numeric_limits<T>::min();
    value_type operator () (const value_type &x, const value_type &y) const {
      return x > y ? x : y;
    }
  };
  struct effector_operation {
    effector_type identity = 0;
    effector_type operator () (const effector_type, const effector_type &y) const {
      return y;
    }
  };
  struct merge_operation {
    value_type operator () (const value_type, const effector_type &y, int) const {
      return y;
    }
  };
};

using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;

constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;

std::vector<u32> solve(std::vector<u32> X, std::vector<u32> Y) {
  size_t N = X.size();
  std::vector<u32> cmp;
  cmp.reserve(N + 1);
  cmp.push_back(0);
  for (auto x: X) {
    cmp.push_back(x);
  }
  std::sort(cmp.begin(), cmp.end());
  cmp.erase(std::unique(cmp.begin(), cmp.end()), cmp.end());
  for (auto &x: X) {
    x = std::lower_bound(cmp.cbegin(), cmp.cend(), x) - cmp.cbegin() - 1;
  }
  size_t xs = cmp.size() - 1;
  lazy_propagation_segment_tree<range_sum_range_assign<u32>> sum;
  lazy_propagation_segment_tree<range_max_range_assign<u32>> max(xs);
  {
    std::vector<std::pair<u32, u32>> build(xs);
    for (auto i: range(0, xs)) {
      build[i].second = cmp[i + 1] - cmp[i];
    }
    sum.build(build);
  }
  std::vector<u32> res(N);
  for (auto i: range(0, N)) {
    auto idx = [&]() -> u32 {
      if (max.fold(0, X[i] + 1) < Y[i]) {
        return 0;
      }
      if (max.fold(X[i], X[i] + 1) >= Y[i]) {
        return X[i] + 1;
      }
      u32 ok = X[i], ng = 0;
      while (ok - ng > 1) {
        u32 md = (ok + ng) >> 1;
        (max.fold(md, X[i] + 1) < Y[i] ? ok : ng) = md;
      }
      return ok;
    }();
    if (idx == X[i] + 1) {
      // std::cout << 0 << ' ';
      continue;
    }
    u32 cur = sum.fold(idx, X[i] + 1).first;
    sum.modify(idx, X[i] + 1, Y[i]);
    max.modify(idx, X[i] + 1, Y[i]);
    u32 next = sum.fold(idx, X[i] + 1).first;
    res[i] = next - cur;
    // std::cout << res[i] << ' ';
  }
  // std::cout << '\n';
  return res;
}

int main() {
  size_t N;
  std::cin >> N;
  std::array<std::vector<u32>, 4> X;
  X.fill(std::vector<u32>(N));
  std::array<std::vector<u32>, 4> Y;
  Y.fill(std::vector<u32>(N));
  for (auto i: range(0, N)) {
    i32 x1, y1, x2, y2;
    std::cin >> x1 >> y1 >> x2 >> y2;
    X[0][i] = X[3][i] = x2;
    X[1][i] = X[2][i] = -x1;
    Y[0][i] = Y[1][i] = y2;
    Y[2][i] = Y[3][i] = -y1;
  }
  std::array<std::vector<u32>, 4> ans;
  for (auto i: range(0, 4)) {
    ans[i] = solve(X[i], Y[i]);
  }
  for (auto i: range(0, N)) {
    u32 tmp = 0;
    for (auto j: range(0, 4)) {
      tmp += ans[j][i];
    }
    std::cout << tmp << '\n';
  }
  return 0;
}
0