結果

問題 No.1074 増殖
ユーザー KoDKoD
提出日時 2020-06-05 22:25:46
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 382 ms / 2,000 ms
コード長 8,054 bytes
コンパイル時間 5,237 ms
コンパイル使用メモリ 132,564 KB
最終ジャッジ日時 2025-01-10 22:43:11
ジャッジサーバーID
(参考情報)
judge4 / judge2
純コード判定しない問題か言語
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 12
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <algorithm>
#include <utility>
#include <numeric>
#include <vector>
#include <array>
template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
if (lhs > rhs) { lhs = rhs; return true; }
return false;
}
template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
if (lhs < rhs) { lhs = rhs; return true; }
return false;
}
struct range {
using itr = int64_t;
struct iterator {
itr i;
constexpr iterator(itr i_): i(i_) { }
constexpr void operator ++ () { ++i; }
constexpr itr operator * () const { return i; }
constexpr bool operator != (iterator x) const { return i != x.i; }
};
const iterator l, r;
constexpr range(itr l_, itr r_): l(l_), r(std::max(l_, r_)) { }
constexpr iterator begin() const { return l; }
constexpr iterator end() const { return r; }
};
struct revrange {
using itr = int64_t;
struct iterator {
itr i;
constexpr iterator(itr i_): i(i_) { }
constexpr void operator ++ () { --i; }
constexpr itr operator * () const { return i; }
constexpr bool operator != (iterator x) const { return i != x.i; }
};
const iterator l, r;
constexpr revrange(itr l_, itr r_): l(l_ - 1), r(std::max(l_, r_) - 1) { }
constexpr iterator begin() const { return r; }
constexpr iterator end() const { return l; }
};
template <class T>
class lazy_propagation_segment_tree {
public:
using value_type = typename T::value_type;
using effector_type = typename T::effector_type;
static inline const auto op1 = typename T::value_operation();
static inline const auto op2 = typename T::effector_operation();
static inline const auto op3 = typename T::merge_operation();
private:
int size, height;
std::vector<value_type> node;
std::vector<effector_type> lazy;
value_type fetch(int i, int l) const {
if (lazy[i] == op2.identity) return node[i];
return op3(node[i], lazy[i], l);
}
void apply(int i, int l) {
if (lazy[i] == op2.identity) return;
if (i < size) {
lazy[i << 1 | 0] = op2(lazy[i << 1 | 0], lazy[i]);
lazy[i << 1 | 1] = op2(lazy[i << 1 | 1], lazy[i]);
}
node[i] = op3(node[i], lazy[i], l);
lazy[i] = op2.identity;
}
void update() {
for (int i = size - 1; i > 0; --i) {
node[i] = op1(node[i << 1 | 0], node[i << 1 | 1]);
}
}
void flush(int i) {
for (int k = height; k >= 0; --k) {
apply(i >> k, 1 << k);
}
}
void lift(int i) {
i >>= 1;
int l = 1;
while (i > 0) {
node[i] = op1(fetch(i << 1 | 0, l), fetch(i << 1 | 1, l));
i >>= 1;
l <<= 1;
}
}
public:
lazy_propagation_segment_tree() = default;
lazy_propagation_segment_tree(int size_, const value_type &initial_ = op1.identity) { init(size_, initial_); }
lazy_propagation_segment_tree(const std::vector<value_type> &node_) { build(node_); }
void init(int size_, const value_type &initial_ = op1.identity) {
size = 1;
height = 0;
while (size < size_) {
size <<= 1;
++height;
}
node.assign(size << 1, initial_);
lazy.assign(size << 1, op2.identity);
update();
}
void build(const std::vector<value_type> &node_) {
init(node_.size());
for (int i = 0; i < node_.size(); ++i) {
node[i + size] = node_[i];
}
update();
}
void assign(int i, const value_type &x) {
i += size;
flush(i);
node[i] = x;
lift(i);
}
void modify(int l, int r, const effector_type &x) {
if (l >= r) return;
flush(l + size);
flush(r + size - 1);
int tl = l + size, tr = r + size, k = 1;
while (tl < tr) {
if (tl & 1) {
lazy[tl] = op2(lazy[tl], x);
apply(tl, k);
++tl;
}
if (tr & 1) {
--tr;
lazy[tr] = op2(lazy[tr], x);
apply(tr, k);
}
tl >>= 1;
tr >>= 1;
k <<= 1;
}
lift(l + size);
lift(r + size - 1);
}
value_type fold(int l, int r) {
if (l >= r) return op1.identity;
flush(l + size);
flush(r + size - 1);
int tl = l + size, tr = r + size, k = 1;
value_type resl = op1.identity, resr = op1.identity;
while (tl < tr) {
if (tl & 1) {
apply(tl, k);
resl = op1(resl, node[tl]);
++tl;
}
if (tr & 1) {
--tr;
apply(tr, k);
resr = op1(node[tr], resr);
}
tl >>= 1;
tr >>= 1;
k <<= 1;
}
return op1(resl, resr);
}
};
template <class T>
struct range_sum_range_assign {
using value_type = std::pair<T, T>;
using effector_type = T;
struct value_operation {
value_type identity = std::make_pair(0, 0);
value_type operator () (const value_type &x, const value_type &y) const {
return { x.first + y.first, x.second + y.second };
}
};
struct effector_operation {
effector_type identity = 0;
effector_type operator () (const effector_type, const effector_type &y) const {
return y;
}
};
struct merge_operation {
value_type operator () (const value_type &x, const effector_type &y, int) const {
return { y * x.second, x.second };
}
};
};
template <class T>
struct range_max_range_assign {
using value_type = T;
using effector_type = T;
struct value_operation {
value_type identity = std::numeric_limits<T>::min();
value_type operator () (const value_type &x, const value_type &y) const {
return x > y ? x : y;
}
};
struct effector_operation {
effector_type identity = 0;
effector_type operator () (const effector_type, const effector_type &y) const {
return y;
}
};
struct merge_operation {
value_type operator () (const value_type, const effector_type &y, int) const {
return y;
}
};
};
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
constexpr i32 inf32 = (i32(1) << 30) - 1;
constexpr i64 inf64 = (i64(1) << 62) - 1;
std::vector<u32> solve(std::vector<u32> X, std::vector<u32> Y) {
size_t N = X.size();
std::vector<u32> cmp;
cmp.reserve(N + 1);
cmp.push_back(0);
for (auto x: X) {
cmp.push_back(x);
}
std::sort(cmp.begin(), cmp.end());
cmp.erase(std::unique(cmp.begin(), cmp.end()), cmp.end());
for (auto &x: X) {
x = std::lower_bound(cmp.cbegin(), cmp.cend(), x) - cmp.cbegin() - 1;
}
size_t xs = cmp.size() - 1;
lazy_propagation_segment_tree<range_sum_range_assign<u32>> sum;
lazy_propagation_segment_tree<range_max_range_assign<u32>> max(xs);
{
std::vector<std::pair<u32, u32>> build(xs);
for (auto i: range(0, xs)) {
build[i].second = cmp[i + 1] - cmp[i];
}
sum.build(build);
}
std::vector<u32> res(N);
for (auto i: range(0, N)) {
auto idx = [&]() -> u32 {
if (max.fold(0, X[i] + 1) < Y[i]) {
return 0;
}
if (max.fold(X[i], X[i] + 1) >= Y[i]) {
return X[i] + 1;
}
u32 ok = X[i], ng = 0;
while (ok - ng > 1) {
u32 md = (ok + ng) >> 1;
(max.fold(md, X[i] + 1) < Y[i] ? ok : ng) = md;
}
return ok;
}();
if (idx == X[i] + 1) {
// std::cout << 0 << ' ';
continue;
}
u32 cur = sum.fold(idx, X[i] + 1).first;
sum.modify(idx, X[i] + 1, Y[i]);
max.modify(idx, X[i] + 1, Y[i]);
u32 next = sum.fold(idx, X[i] + 1).first;
res[i] = next - cur;
// std::cout << res[i] << ' ';
}
// std::cout << '\n';
return res;
}
int main() {
size_t N;
std::cin >> N;
std::array<std::vector<u32>, 4> X;
X.fill(std::vector<u32>(N));
std::array<std::vector<u32>, 4> Y;
Y.fill(std::vector<u32>(N));
for (auto i: range(0, N)) {
i32 x1, y1, x2, y2;
std::cin >> x1 >> y1 >> x2 >> y2;
X[0][i] = X[3][i] = x2;
X[1][i] = X[2][i] = -x1;
Y[0][i] = Y[1][i] = y2;
Y[2][i] = Y[3][i] = -y1;
}
std::array<std::vector<u32>, 4> ans;
for (auto i: range(0, 4)) {
ans[i] = solve(X[i], Y[i]);
}
for (auto i: range(0, N)) {
u32 tmp = 0;
for (auto j: range(0, 4)) {
tmp += ans[j][i];
}
std::cout << tmp << '\n';
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0