結果
| 問題 |
No.1075 木の上の山
|
| コンテスト | |
| ユーザー |
kcvlex
|
| 提出日時 | 2020-06-06 03:23:27 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,767 bytes |
| コンパイル時間 | 1,757 ms |
| コンパイル使用メモリ | 166,748 KB |
| 最終ジャッジ日時 | 2025-01-10 23:12:42 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 3 WA * 27 |
ソースコード
#define CPP17
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#ifdef CPP17
#include <variant>
#endif
// Yay!!
#define endl codeforces
// macros for iterator
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
// alias
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
// variadic min/max
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
// variadic chmin/chmax
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
// multi demension array
template <typename T, std::size_t Head, std::size_t... Tail> struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head> struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
#ifdef CPP17
// fill container
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable<F, Args...>::value) { t = f(args...); } else { for (ssize_t i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } }
#endif
// make multi dimension vector
template <typename T> vec<T> make_v(ssize_t sz) { return vec<T>(sz); }
template <typename T, typename... Tail> auto make_v(ssize_t hs, Tail&&... ts) { auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); return vec<decltype(v)>(hs, v); }
// init
namespace init__ {
struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io;
}
namespace math {
template <typename T>
constexpr T pow(const T &n, ll k) {
T ret = n.mul_id_ele();
T cur = n;
while (k) {
if (k & 1) ret *= cur;
cur *= cur;
k /= 2;
}
return ret;
}
}
namespace math {
template <ll Mod>
struct Modint {
constexpr Modint(ll x) noexcept : x((Mod + x % Mod) % Mod) { }
constexpr Modint() noexcept : Modint(0) { }
constexpr Modint<Mod> add_id_ele() const noexcept {
return Modint<Mod>(0);
}
constexpr Modint<Mod> mul_id_ele() const noexcept {
return Modint<Mod>(1);
}
constexpr ll& value() noexcept {
return x;
}
constexpr ll value() const noexcept {
return x;
}
constexpr Modint& operator +=(const Modint &oth) noexcept {
x += oth.value();
if (Mod <= x) x -= Mod;
return *this;
}
constexpr Modint& operator -=(const Modint &oth) noexcept {
x += Mod - oth.value();
if (Mod <= x) x -= Mod;
return *this;
}
constexpr Modint& operator *=(const Modint &oth) noexcept {
x *= oth.value();
x %= Mod;
return *this;
}
constexpr Modint& operator /=(const Modint &oth) noexcept {
x *= oth.inv().value();
x %= Mod;
return *this;
}
constexpr Modint operator +(const Modint &oth) const noexcept {
return Modint(x) += oth;
}
constexpr Modint operator -(const Modint &oth) const noexcept {
return Modint(x) -= oth;
}
constexpr Modint operator *(const Modint &oth) const noexcept {
return Modint(x) *= oth;
}
constexpr Modint operator /(const Modint &oth) const noexcept {
return Modint(x) /= oth;
}
constexpr Modint operator -() const noexcept {
return Modint((x != 0) * (Mod - x));
}
template <typename T>
constexpr typename std::enable_if<std::is_integral<T>::value, const Modint&>::type
operator =(T t) noexcept {
(*this) = Modint(std::forward<T>(t));
return *this;
}
constexpr Modint inv() const noexcept {
return ::math::pow(*this, Mod - 2);
}
constexpr ll mod() const noexcept {
return Mod;
}
private:
ll x;
};
}
namespace graph {
using Node = ll;
using Weight = ll;
using Edge = std::pair<Node, Weight>;
template <bool Directed>
struct Graph : public vvec<Edge> {
using vvec<Edge>::vvec;
void add_edge(Node f, Node t, Weight w = 1) {
(*this)[f].emplace_back(t, w);
if (!Directed) (*this)[t].emplace_back(f, w);
}
Graph<Directed> build_inv() const {
Graph<Directed> ret(this->size());
for (Node i = 0; i < this->size(); i++) {
for (const Edge &e : (*this)[i]) {
Node j;
Weight w;
std::tie(j, w) = e;
if (!Directed && j < i) continue;
ret.add_edge(j, i, w);
}
}
return ret;
}
};
template <typename Iterator>
class dst_iterator {
Iterator ite;
public:
dst_iterator(Iterator ite) : ite(ite) { }
bool operator ==(const dst_iterator<Iterator> &oth) const {
return ite == oth.ite;
}
bool operator !=(const dst_iterator<Iterator> &oth) const {
return !(*this == oth);
}
bool operator <(const dst_iterator<Iterator> &oth) const {
return ite < oth.ite;
}
bool operator >(const dst_iterator<Iterator> &oth) const {
return ite > oth.ite;
}
bool operator <=(const dst_iterator<Iterator> &oth) const {
return ite <= oth.ite;
}
bool operator >=(const dst_iterator<Iterator> &oth) const {
return ite >= oth.ite;
}
const Node& operator *() {
return ite->first;
}
const Node& operator *() const {
return ite->first;
}
dst_iterator operator ++() {
++ite;
return ite;
}
};
class dst_iteration {
using ite_type = vec<Edge>::const_iterator;
const vec<Edge> &edges;
public:
dst_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.cbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.cend());
}
};
class dst_reverse_iteration {
using ite_type = vec<Edge>::const_reverse_iterator;
const vec<Edge> &edges;
public:
dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.crbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.crend());
}
};
dst_iteration dst(const vec<Edge> &edges) {
return dst_iteration(edges);
}
dst_reverse_iteration rdst(const vec<Edge> &edges) {
return dst_reverse_iteration(edges);
}
}
constexpr ll mod = 1e9 + 7;
using mint = math::Modint<mod>;
struct Solver {
graph::Graph<false> tree;
ll k;
vec<ll> par;
vvec<mint> dp, rdp, dp_sum;
vec<vvec<mint>> lsum, rsum;
ll root = 0;
Solver(ll n, ll k)
: par(n), tree(n), k(k),
dp(make_v<mint>(n, k + 1)), rdp(dp),
dp_sum(make_v<mint>(n, k + 2)),
lsum(n), rsum(n)
{
for (ll i = 1; i < n; i++) {
ll a, b;
std::cin >> a >> b;
tree.add_edge(a - 1, b - 1);
}
}
void dfs(ll cur, ll pre) {
par[cur] = pre;
dp[cur][0] = 0;
ll cnt = 0;
fill_seq(dp[cur], [](ll i) { return mint(!!i); });
for (ll nxt : graph::dst(tree[cur])) if (pre != nxt) {
dfs(nxt, cur);
cnt++;
for (ll i = 1; i <= k; i++) dp[cur][i] *= dp_sum[nxt][i + 1];
}
lsum[cur] = make_v<mint>(cnt + 1, k + 1);
rsum[cur] = make_v<mint>(cnt + 1, k + 1);
for (ll loop = 0; loop < 2; loop++) {
auto &sum = (loop == 0 ? lsum[cur] : rsum[cur]);
std::fill(ALL(sum[0]), mint(1));
ll idx = 0;
fill_seq(sum[0], [](int) { return mint(1); });
auto update = [&](ll nxt) {
if (nxt == pre) return;
for (ll i = 1; i <= k; i++) {
sum[idx + 1][i] += sum[idx][i] * dp_sum[nxt][i + 1];
sum[idx + 1][i] -= sum[idx][i - 1] * dp_sum[nxt][i];
}
idx++;
};
if (loop == 0) {
for (ll nxt : graph::dst(tree[cur])) update(nxt);
} else {
for (ll nxt : graph::rdst(tree[cur])) update(nxt);
}
}
for (ll i = 1; i <= k; i++) dp_sum[cur][i + 1] = dp_sum[cur][i] + dp[cur][i];
}
void calc_rdp(ll cur, ll pidx) {
if (cur == root) {
fill_seq(rdp[cur], [](ll i) { return mint(!!i); });
} else {
mint ls = 0, rs = 0, psum = 0;
ll p = par[cur];
ll ch = lsum[p].size() - 1;
if (pidx == 0) ls = 1;
if (pidx == ch - 1) rs = 1;
for (ll i = 1; i <= k; i++) {
if (pidx != 0) ls += lsum[p][pidx][i];
if (ch - pidx - 1 != 0) rs += rsum[p][ch - pidx - 1][i];
psum += ls * rs * rdp[p][i];
rdp[cur][i] = psum;
}
}
ll idx = 0;
for (ll nxt : graph::dst(tree[cur])) if (nxt != par[cur]) calc_rdp(nxt, idx++);
}
mint solve() {
dfs(root, -1);
calc_rdp(root, -1);
mint ans = 0;
for (ll n = 0; n < tree.size(); n++) for (ll i = 1; i <= k; i++) {
if (n == root) ans += dp[n][i];
else ans += dp[n][i] * rdp[n][i - 1];
}
return ans;
}
};
int main() {
ll n, k;
std::cin >> n >> k;
Solver solver(n, k);
std::cout << solver.solve().value() << "\n";
return 0;
}
kcvlex