結果
問題 | No.754 畳み込みの和 |
ユーザー | KoD |
提出日時 | 2020-06-06 12:17:58 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 166 ms / 5,000 ms |
コード長 | 10,420 bytes |
コンパイル時間 | 1,265 ms |
コンパイル使用メモリ | 100,000 KB |
実行使用メモリ | 8,948 KB |
最終ジャッジ日時 | 2024-12-23 12:02:58 |
合計ジャッジ時間 | 2,926 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 160 ms
8,868 KB |
testcase_01 | AC | 162 ms
8,948 KB |
testcase_02 | AC | 166 ms
8,944 KB |
ソースコード
#include <iostream> #include <algorithm> #include <utility> #include <numeric> #include <vector> #include <array> template <class T, class U> inline bool chmin(T &lhs, const U &rhs) { if (lhs > rhs) { lhs = rhs; return true; } return false; } template <class T, class U> inline bool chmax(T &lhs, const U &rhs) { if (lhs < rhs) { lhs = rhs; return true; } return false; } struct range { using itr = int64_t; struct iterator { itr i; constexpr iterator(itr i_): i(i_) { } constexpr void operator ++ () { ++i; } constexpr itr operator * () const { return i; } constexpr bool operator != (iterator x) const { return i != x.i; } }; const iterator l, r; constexpr range(itr l_, itr r_): l(l_), r(std::max(l_, r_)) { } constexpr iterator begin() const { return l; } constexpr iterator end() const { return r; } }; struct revrange { using itr = int64_t; struct iterator { itr i; constexpr iterator(itr i_): i(i_) { } constexpr void operator ++ () { --i; } constexpr itr operator * () const { return i; } constexpr bool operator != (iterator x) const { return i != x.i; } }; const iterator l, r; constexpr revrange(itr l_, itr r_): l(l_ - 1), r(std::max(l_, r_) - 1) { } constexpr iterator begin() const { return r; } constexpr iterator end() const { return l; } }; using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; constexpr i32 inf32 = (i32(1) << 30) - 1; constexpr i64 inf64 = (i64(1) << 62) - 1; template <uint32_t Modulus> class modular { public: using value_type = uint32_t; using max_type = uint64_t; static constexpr value_type mod = Modulus; static constexpr value_type get_mod() { return mod; } static_assert(mod >= 2, "invalid mod :: smaller than 2"); static_assert(mod < (value_type(1) << 31), "invalid mod :: over 2^31"); template <class T> static constexpr value_type normalize(T value_) { if (value_ < 0) { value_ = -value_; value_ %= mod; if (value_ == 0) return 0; return mod - value_; } return value_ % mod; } private: value_type value; public: constexpr modular(): value(0) { } template <class T> explicit constexpr modular(T value_): value(normalize(value_)) { } template <class T> explicit constexpr operator T() { return static_cast<T>(value); } constexpr value_type get() const { return value; } constexpr modular operator - () const { return modular(mod - value); } constexpr modular operator ~ () const { return inverse(); } constexpr value_type &extract() { return value; } constexpr modular inverse() const { return power(mod - 2); } constexpr modular power(max_type exp) const { modular res(1), mult(*this); while (exp > 0) { if (exp & 1) res *= mult; mult *= mult; exp >>= 1; } return res; } constexpr modular operator + (const modular &rhs) const { return modular(*this) += rhs; } constexpr modular& operator += (const modular &rhs) { if ((value += rhs.value) >= mod) value -= mod; return *this; } constexpr modular operator - (const modular &rhs) const { return modular(*this) -= rhs; } constexpr modular& operator -= (const modular &rhs) { if ((value += mod - rhs.value) >= mod) value -= mod; return *this; } constexpr modular operator * (const modular &rhs) const { return modular(*this) *= rhs; } constexpr modular& operator *= (const modular &rhs) { value = (max_type) value * rhs.value % mod; return *this; } constexpr modular operator / (const modular &rhs) const { return modular(*this) /= rhs; } constexpr modular& operator /= (const modular &rhs) { return (*this) *= rhs.inverse(); } constexpr bool zero() const { return value == 0; } constexpr bool operator == (const modular &rhs) const { return value == rhs.value; } constexpr bool operator != (const modular &rhs) const { return value != rhs.value; } friend std::ostream& operator << (std::ostream &stream, const modular &rhs) { return stream << rhs.value; } }; using m32 = modular<1000000007>; namespace detail { template <size_t N, class T> constexpr std::array<T, N> calculate_roots(T omega) { std::array<T, N> res; res[N - 1] = omega; for (size_t i = N - 1; i > 0; --i) { res[i - 1] = res[i] * res[i]; } return res; } template <class OtherModular, class Modular> constexpr OtherModular convert_mod(Modular x) { return OtherModular(x.get()); } template <class OtherModular, class Modular> std::vector<OtherModular> convert_mod_vec(const std::vector<Modular> &vec) { std::vector<OtherModular> res(vec.size()); std::transform(vec.cbegin(), vec.cend(), res.begin(), convert_mod<OtherModular, Modular>); return res; } namespace bit_operation { constexpr uint32_t b16 = 0b00000000000000001111111111111111; constexpr uint32_t b8 = 0b00000000111111110000000011111111; constexpr uint32_t b4 = 0b00001111000011110000111100001111; constexpr uint32_t b2 = 0b00110011001100110011001100110011; constexpr uint32_t b1 = 0b01010101010101010101010101010101; constexpr size_t reverse(size_t x) { x = ((x >> 16) & b16) | ((x & b16) << 16); x = ((x >> 8) & b8) | ((x & b8) << 8); x = ((x >> 4) & b4) | ((x & b4) << 4); x = ((x >> 2) & b2) | ((x & b2) << 2); x = ((x >> 1) & b1) | ((x & b1) << 1); return x; } }; namespace garner_mod { constexpr uint32_t m0 = 998244353; constexpr uint32_t m1 = 935329793; constexpr uint32_t m2 = 943718401; constexpr uint32_t p0 = 3; constexpr uint32_t p1 = 3; constexpr uint32_t p2 = 7; constexpr uint64_t m0m1 = (uint64_t) m0 * m1; constexpr auto im0_m1 = modular<m1>(m0).inverse(); constexpr auto im0m1_m2 = modular<m2>(m0m1).inverse(); }; /* prime numbers for ntt [ 1051721729, 6 ] [ 2^20 ] [ 1045430273, 3 ] [ 2^20 ] [ 1007681537, 3 ] [ 2^20 ] [ 962592769, 7 ] [ 2^21 ] [ 924844033, 5 ] [ 2^21 ] [ 985661441, 3 ] [ 2^22 ] [ 943718401, 7 ] [ 2^22 ] [ 935329793, 3 ] [ 2^22 ] [ 998244353, 3 ] [ 2^23 ] */ } template <uint32_t Modulus, uint32_t PrimRoot, class Modular = modular<Modulus>> class number_theoretic_transform { public: using value_type = Modular; static constexpr uint32_t mod = Modulus; static constexpr uint32_t prim = PrimRoot; private: static constexpr size_t level = __builtin_ctz(mod - 1); static constexpr value_type unit = value_type(1); static constexpr value_type omega = value_type(prim).power((mod - 1) >> level); static constexpr auto roots = detail::calculate_roots<level>(omega); static constexpr auto inv_roots = detail::calculate_roots<level>(omega.inverse()); void M_transform(std::vector<value_type> &F) const { size_t size = F.size(); size_t logn = __builtin_ctz(size); for (size_t i = 0; i < size; ++i) { size_t j = detail::bit_operation::reverse(i) >> (32 - logn); if (i < j) { std::swap(F[i], F[j]); } } value_type coeff = unit; for (size_t s = 0; s < logn; ++s) { size_t mh = 1 << s; size_t m = mh << 1; for (size_t i = 0; i < size; i += m) { coeff = unit; for (size_t j = i; j < i + mh; ++j) { auto a = F[j]; auto b = F[j + mh] * coeff; F[j] = a + b; F[j + mh] = a - b; coeff *= roots[s]; } } } } void M_inv_transform(std::vector<value_type> &F) const { size_t size = F.size(); size_t logn = __builtin_ctz(size); for (size_t i = 0; i < size; ++i) { size_t j = detail::bit_operation::reverse(i) >> (32 - logn); if (i < j) { std::swap(F[i], F[j]); } } value_type coeff = unit; for (size_t s = 0; s < logn; ++s) { size_t mh = 1 << s; size_t m = mh << 1; for (size_t i = 0; i < size; i += m) { coeff = unit; for (size_t j = i; j < i + mh; ++j) { auto a = F[j]; auto b = F[j + mh] * coeff; F[j] = a + b; F[j + mh] = a - b; coeff *= inv_roots[s]; } } } coeff = value_type(size).inverse(); for (auto &x: F) { x *= coeff; } } public: std::vector<value_type> convolve(std::vector<value_type> A, std::vector<value_type> B) const { if (A.empty() || B.empty()) return { }; size_t res_size = A.size() + B.size() - 1; size_t fix_size = 1 << (31 - __builtin_clz(2 * res_size - 1)); if (A == B) { A.resize(fix_size); M_transform(A); for (size_t i = 0; i < fix_size; ++i) { A[i] *= A[i]; } M_inv_transform(A); A.resize(res_size); return A; } else { A.resize(fix_size); B.resize(fix_size); M_transform(A); M_transform(B); for (size_t i = 0; i < fix_size; ++i) { A[i] *= B[i]; } M_inv_transform(A); A.resize(res_size); return A; } } template <class OtherModular> std::vector<value_type> convolve_convert(const std::vector<OtherModular> &A, const std::vector<OtherModular> &B) const { return convolve(detail::convert_mod_vec<value_type>(A), detail::convert_mod_vec<value_type>(B)); } }; template <class Modular> std::vector<Modular> arbitrary_mod_convolution(const std::vector<Modular> &A, const std::vector<Modular> &B) { using namespace detail::garner_mod; number_theoretic_transform<m0, p0> ntt0; number_theoretic_transform<m1, p1> ntt1; number_theoretic_transform<m2, p2> ntt2; auto X = ntt0.convolve_convert(A, B); auto Y = ntt1.convolve_convert(A, B); auto Z = ntt2.convolve_convert(A, B); size_t size = X.size(); std::vector<Modular> res(size); for (size_t i = 0; i < size; ++i) { uint32_t s = (uint32_t) X[i]; uint64_t t = (uint64_t) ((Y[i] - modular<m1>(s)) * im0_m1) * m0 + s; res[i] = Modular((__uint128_t) ((Z[i] - modular<m2>(t)) * im0m1_m2) * m0m1 + t); } return res; } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); size_t N; std::cin >> N; ++N; std::vector<m32> A(N), B(N); for (auto &x: A) { std::cin >> x.extract(); } for (auto &x: B) { std::cin >> x.extract(); } auto C = arbitrary_mod_convolution(A, B); m32 ans; for (auto i: range(0, N)) { ans += C[i]; } std::cout << ans << '\n'; return 0; }