結果
| 問題 |
No.1070 Missing a space
|
| コンテスト | |
| ユーザー |
hamray
|
| 提出日時 | 2020-06-06 21:38:56 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 1,000 ms |
| コード長 | 13,065 bytes |
| コンパイル時間 | 2,210 ms |
| コンパイル使用メモリ | 194,680 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-23 14:01:55 |
| 合計ジャッジ時間 | 2,802 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 7 |
コンパイルメッセージ
main.cpp: In function ‘std::ostream& operator<<(std::ostream&, Point&)’:
main.cpp:243:1: warning: no return statement in function returning non-void [-Wreturn-type]
243 | }
| ^
ソースコード
#include <bits/stdc++.h>
//typedef
//-------------------------#include <bits/stdc++.h>
const double pi = 3.141592653589793238462643383279;
using namespace std;
template<typename T=int>inline T readT() {
char c = getchar_unlocked(); bool neg = (c=='-');
T res = neg?0:c-'0';
while(isdigit(c=getchar_unlocked())) res = res*10 + c-'0';
return neg?-res:res;
}
template<typename T=int>inline void writeT(T x, char c='\n'){
int d[20],i=0; if(x<0)putchar_unlocked('-'),x*=-1;
do{d[i++]=x%10;}while(x/=10); while(i--)putchar_unlocked('0'+d[i]);
putchar_unlocked(c);
}
//typedef
//------------------------------------------
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<string> VS;
typedef pair<int, int> PII;
typedef pair<long long, long long> PLL;
typedef pair<int, PII> TIII;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<LL> VLL;
typedef vector<VLL> VVLL;
//container util
//------------------------------------------
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define PB push_back
#define MP make_pair
#define SZ(a) int((a).size())
#define SQ(a) ((a)*(a))
#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)
#define EXIST(s,e) ((s).find(e)!=(s).end())
#define SORT(c) sort((c).begin(),(c).end())
//repetition
//------------------------------------------
#define FOR(i,s,n) for(int i=s;i<(int)n;++i)
#define REP(i,n) FOR(i,0,n)
#define MOD 1000000007
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
const double EPS = 1E-8;
#define chmin(x,y) x=min(x,y)
#define chmax(x,y) x=max(x,y)
class UnionFind {
public:
vector <int> par;
vector <int> siz;
UnionFind(int sz_): par(sz_), siz(sz_, 1) {
for (ll i = 0; i < sz_; ++i) par[i] = i;
}
void init(int sz_) {
par.resize(sz_);
siz.assign(sz_, 1LL);
for (ll i = 0; i < sz_; ++i) par[i] = i;
}
int root(int x) {
while (par[x] != x) {
x = par[x] = par[par[x]];
}
return x;
}
bool merge(int x, int y) {
x = root(x);
y = root(y);
if (x == y) return false;
if (siz[x] < siz[y]) swap(x, y);
siz[x] += siz[y];
par[y] = x;
return true;
}
bool issame(int x, int y) {
return root(x) == root(y);
}
int size(int x) {
return siz[root(x)];
}
};
ll modPow(ll x, ll n, ll mod = MOD){
ll res = 1;
while(n){
if(n&1) res = (res * x)%mod;
res %= mod;
x = x * x %mod;
n >>= 1;
}
return res;
}
#define SIEVE_SIZE 5000000+10
bool sieve[SIEVE_SIZE];
void makeSieve(){
for(int i=0; i<SIEVE_SIZE; ++i) sieve[i] = true;
sieve[0] = sieve[1] = false;
for(int i=2; i*i<SIEVE_SIZE; ++i) if(sieve[i]) for(int j=2; i*j<SIEVE_SIZE; ++j) sieve[i*j] = false;
}
bool isprime(ll n){
if(n == 0 || n == 1) return false;
for(ll i=2; i*i<=n; ++i) if(n%i==0) return false;
return true;
}
const int MAX = 2000010;
long long fac[MAX], finv[MAX], inv[MAX];
// テーブルを作る前処理
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
// 二項係数計算
long long COM(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
long long extGCD(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a%b, y, x);
y -= a/b * x;
return d;
}
// 負の数にも対応した mod (a = -11 とかでも OK)
inline long long mod(long long a, long long m) {
return (a % m + m) % m;
}
// 逆元計算 (ここでは a と m が互いに素であることが必要)
long long modinv(long long a, long long m) {
long long x, y;
extGCD(a, m, x, y);
return mod(x, m); // 気持ち的には x % m だが、x が負かもしれないので
}
ll GCD(ll a, ll b){
if(b == 0) return a;
return GCD(b, a%b);
}
typedef vector<ll> vec;
typedef vector<vec> mat;
mat mul(mat &A, mat &B) {
mat C(A.size(), vec((int)B[0].size()));
for(int i=0; i<A.size(); ++i){
for(int k=0; k<B.size(); ++k){
for(int j=0; j<B[0].size(); ++j){
C[i][j] = (C[i][j] + A[i][k] * B[k][j] %MOD) % MOD;
}
}
}
return C;
}
mat matPow(mat A, ll n) {
mat B(A.size(), vec((int)A.size()));
for(int i=0; i<A.size(); ++i){
B[i][i] = 1;
}
while(n > 0) {
if(n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
map<ll,ll> prime_factor(ll n) {
map<ll,ll> res;
for(ll i=2; i*i <= n; i++) {
while(n%i == 0) {
res[i]++;
n /= i;
}
}
if(n != 1) res[n] = 1;
return res;
}
#define curr(P, i) P[i]
#define next(P, i) P[(i+1)%P.size()]
using Point = complex<double>;
enum { OUT, ON, IN };
istream &operator>>(istream &is, Point &p)
{
double a, b;
is >> a >> b;
p = Point(a, b);
return is;
}
ostream &operator<<(ostream &os, Point &p)
{
os << fixed << setprecision(10) << p.real() << " " << p.imag();
}
const double PI = acos(-1);
inline bool eq(double a, double b) { return fabs(b - a) < EPS; }
//二つのスカラーが等しいか
#define EQ(a, b) (abs((a) - (b)) < EPS)
//二つのベクトルが等しいか
#define EQV(a, b) (EQ((a), real(), (b).real()) && EQ((a), imag(), (b).imag()))
namespace std
{
bool operator<(const Point &a, const Point &b)
{
return a.real() != b.real() ? a.real() < b.real() : a.imag() < b.imag();
}
} // namespace std
struct Line
{
Point a, b;
Line() {}
Line(Point a, Point b) : a(a), b(b) {}
//a, bはそれぞれ座標を指す. これより一つの「line」に対して二個の点を持つことになる
Line(double A, double B, double C) // Ax + By = C
{
if (eq(A, 0))
a = Point(0, C / B), b = Point(1, C / B);
else if (eq(B, 0))
b = Point(C / A, 0), b = Point(C / A, 1);
else
a = Point(0, C / B), b = Point(C / A, 0);
}
friend ostream &operator<<(ostream &os, Line &p)
{
return os << p.a << " to " << p.b;
}
friend istream &operator>>(istream &is, Line &a)
{
return is >> a.a >> a.b;
}
};
struct Segment : Line
{
Segment() {}
Segment(Point a, Point b) : Line(a, b) {}
};
struct Circle
{
Point p;
double r;
Circle() {}
Circle(Point p, double r) : p(p), r(r) {}
};
using Points = vector<Point>;
using Polygon = vector<Point>;
using Segments = vector<Segment>;
using Lines = vector<Line>;
using Circles = vector<Circle>;
double dot(const Point a, const Point b)
{
return real(a) * real(b) + imag(a) * imag(b);
}
double cross(const Point a, const Point b)
{
return real(a) * imag(b) - imag(a) * real(b);
}
int ccw(const Point &a, Point b, Point c)
{
b = b - a, c = c - a;
if (cross(b, c) > EPS)
return +1; // "COUNTER_CLOCKWISE"
if (cross(b, c) < -EPS)
return -1; // "CLOCKWISE"
if (dot(b, c) < 0)
return +2; // "ONLINE_BACK"
if (norm(b) < norm(c))
return -2; // "ONLINE_FRONT"
return 0; // "ON_SEGMENT"
}
bool parallel(const Line &a, const Line &b)
{
return abs(cross(a.b - a.a, b.b - b.a)) < EPS;
}
bool orthogonal(const Line &a, const Line &b)
{
return abs(dot(a.a - a.b, b.a - b.b)) < EPS;
}
Point projection(const Line &l, const Point &p)
{
double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
Point projection(const Segment &l, const Point &p)
{
double t = dot(p - l.a, l.a - l.b) / norm(l.a - l.b);
return l.a + (l.a - l.b) * t;
}
Point reflection(const Line &l, const Point &p)
{
return p + (projection(l, p) - p) * 2.0;
}
bool Intersect(const Line &l, const Point &p)
{
return abs(ccw(l.a, l.b, p)) != 1;
}
bool intersect(const Line &l, const Line &m)
{
return abs(cross(l.b - l.a, m.b - m.a)) > EPS || abs(cross(l.b - l.a, m.b - l.a)) < EPS;
}
bool intersect(const Segment &s, const Point &p)
{
return ccw(s.a, s.b, p) == 0;
}
bool intersect(const Line &l, const Segment &s)
{
return cross(l.b - l.a, s.a - l.a) * cross(l.b - l.a, s.b - l.a) < EPS;
}
bool intersect(const Segment &s, const Segment &t)
{
return ccw(s.a, s.b, t.a) * ccw(s.a, s.b, t.b) <= 0 && ccw(t.a, t.b, s.a) * ccw(t.a, t.b, s.b) <= 0;
}
Point crosspoint(const Line &l, const Line &m)
{
double A = cross(l.b - l.a, m.b - m.a);
double B = cross(l.b - l.a, l.b - m.a);
if (abs(A) < EPS && abs(B) < EPS)
return m.a;
return m.a + (m.b - m.a) * B / A;
}
Point crosspoint(const Segment &l, const Segment &m)
{
double A = cross(l.b - l.a, m.b - m.a);
double B = cross(l.b - l.a, l.b - m.a);
if (abs(A) < EPS && abs(B) < EPS)
return m.a;
return m.a + (m.b - m.a) * B / A;
}
double distance(const Point &a, const Point &b)
{
return abs(a - b);
}
double distance(const Line &l, const Point &p)
{
return abs(p - projection(l, p));
}
double distance(const Line &l, const Line &m)
{
return intersect(l, m) ? 0 : distance(l, m.a);
}
double distance(const Segment &s, const Point &p)
{
Point r = projection(s, p);
if (intersect(s, r))
return abs(r - p);
return min(abs(s.a - p), abs(s.b - p));
}
double distance(const Segment &a, const Segment &b)
{
if (intersect(a, b))
return 0;
return min({distance(a, b.a), distance(a, b.b), distance(b, a.a), distance(b, a.b)});
}
double distance(const Line &l, const Segment &s)
{
if (intersect(l, s))
return 0;
return min(distance(l, s.a), distance(l, s.b));
}
double area2(const Polygon &p)
{
double A = 0;
for (int i = 0; i < (int)p.size(); ++i)
{
A += cross(p[i], p[(i + 1) % p.size()]);
}
return A;
}
bool isConvex(const Polygon &p)
{
for (int i = 0; i < (int)p.size(); ++i)
{
if (cross(p[(i - 1 + p.size()) % p.size()] - p[i], p[i] - p[(i + 1) % p.size()]) < -EPS)
return false;
}
return true;
}
int contains(const Polygon &Q, const Point &p)
{
bool in = false;
for (int i = 0; i < Q.size(); ++i)
{
Point a = Q[i] - p, b = Q[(i + 1) % Q.size()] - p;
if (a.imag() > b.imag())
swap(a, b);
if (a.imag() <= 0 && 0 < b.imag() && cross(a, b) < 0)
in = !in;
if (cross(a, b) == 0 && dot(a, b) <= 0)
return ON;
}
return in ? IN : OUT;
}
Polygon convex_hull(Polygon &p)
{
int n = (int)p.size(), k = 0;
if (n <= 2)
return p;
sort(p.begin(), p.end());
vector<Point> ch(n * 2);
for (int i = 0; i < n; ch[k++] = p[i++])
{
while (k >= 2 && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0)
--k;
}
for (int i = n - 2, t = k + 1; i >= 0; ch[k++] = p[i--])
{
while (k >= t && cross(ch[k - 1] - ch[k - 2], p[i] - ch[k - 1]) < 0)
--k;
}
ch.resize(k - 1);
return ch;
}
double convex_diameter(const Polygon &p)
{
int n = (int)p.size();
if (n == 2)
return abs(p[0] - p[1]);
int is = 0, js = 0;
for (int i = 1; i < n; ++i)
{
if (imag(p[i]) > imag(p[is]))
is = i;
if (imag(p[i]) < imag(p[js]))
js = i;
}
double res = abs(p[is] - p[js]);
int i, maxi, j, maxj;
i = maxi = is;
j = maxj = js;
do
{
if (cross(p[(i + 1) % n] - p[i], p[(j + 1) % n] - p[j]) >= 0)
j = (j + 1) % n;
else
i = (i + 1) % n;
res = max(res, abs(p[i] - p[j]));
} while (i != is || j != js);
return res;
}
Polygon convex_cut(const Polygon &p, const Line l)
{
Polygon ret;
for (int i = 0; i < p.size(); ++i)
{
Point now = p[i], nxt = p[(i + 1) % p.size()];
if (ccw(l.a, l.b, now) != -1) //交点が線分l上にあるとき
ret.push_back(now);
if (ccw(l.a, l.b, now) * ccw(l.a, l.b, nxt) < 0)
{
ret.push_back(crosspoint(Line(now, nxt), l));
}
}
return (ret);
}
using ld= long double;
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(5);
string s; cin >> s;
int ans = 0;
string t = "";
t += s[0];
set<pair<string, string>> st;
for(int i=1; i<s.size(); i++){
string tt = "";
for(int j=i; j<s.size(); j++) tt += s[j];
if(t[0] != '0' && tt[0] != '0') st.insert(make_pair(t, tt));
t += s[i];
}
cout << st.size() << endl;
return 0;
}
hamray