結果
問題 | No.1011 Infinite Stairs |
ユーザー | MorikiN |
提出日時 | 2020-06-07 15:26:56 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,403 bytes |
コンパイル時間 | 1,983 ms |
コンパイル使用メモリ | 181,468 KB |
実行使用メモリ | 452,572 KB |
最終ジャッジ日時 | 2024-06-06 05:36:10 |
合計ジャッジ時間 | 5,318 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
ソースコード
#include <bits/stdc++.h> #include <algorithm> #include <cmath> #include <set> #include <cstdio> #include <vector> #include <iostream> #include <utility> #include <queue> #include <map> #include <complex> #define fir first #define sec second #define sz(s) (s).size() #define pb push_back #define get(n) scanf("%d",&n); #define gets(s) string s;cin >> (s); #define prfi(n) printf("%d", &n); #define prfd(n) printf("%lf", &n); #define All(s) (s).begin(), (s).end() #define rep(i,j) for(int (i)=0;(i)<(j);(i)++) #define For(i,j,k) for(int (i)=(j);(i)<(k);(i)++) #define drep(i,j) for(int (i)=(j);(i)>=0;(i)--) #define Ford(i,j,k) for(int (i)=(j);i>=(k);i--) #define fore(c,v) for(auto (c): (v)) #define lp for(int __=0;__<n;i++) #define mem(a,b) memset(a,b,sizeof(a)); #define dump(x) std::cout << #x << " = " << (x) << std::endl; #define debug(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << " " << __FILE__ << endl; using ull = unsigned long long int; using ll = long long; using ld = long double; using pii = std::pair<int,int>; using pll = std::pair<ll, ll>; using vi = std::vector<int> ; using vvi = std::vector<vi> ; using vll = std::vector<ll>; using vvll = std::vector<vll>; using vd = std::vector<double> ; using vvd = std::vector<vd> ; using qi = std::queue<int> ; using vpii = std::vector<std::pair<int, int> >; using vpll = std::vector<pll>; using namespace std; const int Mod = (1e9) + 7; const int INF = 1e9 + 19; const ll INFL = 1e18 + 19; const int dx[] = {-1, 0, 0, 1}; const int dy[] = {0, -1, 1, 0}; const int dx2[] = {-1, -1, -1, 0, 0, 0, 1, 1, 1}; const int dy2[] = {1, 0, -1, 1, 0, -1, 1, 0, -1}; const double EPS = 1e-10; //_____________________________________Templates_________________________________________// template<class T1, class T2> inline void chmin(T1 &a, T2 b){if(a > b) a = b;} template<class T1, class T2> inline void chmax(T1 &a, T2 b){if(a < b) a = b;} template<class T> inline void pri(T a){cout << a << endl;} template<class Z> using vec = vector<Z>; template<class T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>; //mainly use for dynamic prog template<class T1, class T2> void update(T1 &a, T2 b){ a += b; if(a > Mod) a %= Mod; } inline void IN(void){ return; } template <typename First, typename... Rest> void IN(First& first, Rest&... rest){ cin >> first; IN(rest...); return; } inline void OUT(void){ cout << "\n"; return; } template <typename First, typename... Rest> void OUT(First first, Rest... rest){ cout << first << " "; OUT(rest...); return; } bool pairsort(pll pl, pll pr){ if(pl.first == pr.first)return pl.second > pr.second; return pl.first < pr.first; } int cntbit(ll a,int n,int j){int res = 0;For(i,j,n){if(a>>i & 1){res++;}}return res;} vector<int> make_bit(int a){vector<int> res; for(int i=31;i>=0;i--)if(a&(1<<i))res.pb(i);return res;} bool stdbit(int a, int b){return a&(1 << b); } int GCD(int a, int b){if(b > a)return GCD(b,a);if(a%b == 0)return b;else return GCD(b, a%b);} int LCM(int a, int b){return a*b/GCD(a,b);} int roundup(int a, int b){if(a % b == 0)return a/b;else return (a+b)/b;} int rounddown(int a, int b){if(a%b == 0)return a/b;else {return (a-b)/b;}} ll pow(ll a, ll n){ll res = 1;while(n > 0){if(n&1)res *= a; a *= a; n = n >> 1;}return res;} ll GetDiviserCount(ll N)//約数の個数 { ll res = 1; For(i,2,sqrt(N)+1) { ll cnt = 0; while(N%i == 0) { cnt++; N /= i; } res *= (cnt + 1); if(N == 1)break; } if(N != 1)res *= 2; return res; } vll GetDivisor(ll N)//約数列挙 { vll res; for(ll i = 1;i*i <= N;i++) { if(N%i == 0) { res.pb(i); if(i*i != N)res.pb(N/i); } } sort(All(res)); return res; } struct Modint { using ll = long long int; ll x; Modint(ll x=0) :x((x%Mod+Mod)%Mod) {} Modint operator - () { return Modint(-x); } Modint& operator +=(Modint a) { (x += a.x%Mod)%Mod; return *this; } Modint& operator -=(Modint a) { x = (x - a.x + Mod)%Mod; return *this; } Modint& operator *=(Modint a) { (x *= a.x) %= Mod; return *this; } Modint operator + (Modint a) { Modint b(*this); b += a; return b; } Modint operator - (Modint a) { Modint b(*this); b -= a; return b; } Modint operator * (Modint a) { Modint b(*this); b *= a; return b; } long long int EXTGCD(long long int a, long long int b, long long int &x, long long int &y) { if(b==0) { x = 1; y = 0; return a; } long long int g = EXTGCD(b,a%b,y,x); y -= (a/b)*x; return g; } Modint inverse() { long long int a,b; EXTGCD(x,Mod,a,b); (a += Mod)%=Mod; return a; } Modint pow(ll a) { Modint res = 1; Modint b = x; while(a > 0) { if(a & 1)res *= b; a = a >> 1; b *= b; } return res; } friend ostream& operator<<(ostream& os, const Modint& a); }; ostream& operator<< (ostream& os, const Modint& a) { os << a.x; return os; } struct combination { vector<Modint> fact,ifact; combination(int n) : fact(n+1), ifact(n+1) { fact[0] = 1; for(int i=1;i<=n;i++)fact[i] = fact[i-1] * i; ifact[n] = fact[n].inverse(); for(int i=n;i>=1;i--)ifact[i-1] = ifact[i] * i; } Modint operator() (int n,int k) { return fact[n]*ifact[n-k]*ifact[k]; } }; using vm = vector<Modint>; using vvm = vector<vm>; template<class Z> struct MyMatrix { using mat = MyMatrix<Z>; vector<vector<Z>> m_dat; int m_h; int m_w; MyMatrix(int h, int w) : m_h(h), m_w(w) ,m_dat(h,vector<Z>(w)) {} vector<Z> &operator[] (int idx) { return m_dat[idx]; } mat Multiple(mat &a) { mat C(m_h, a.m_w); for(int i=0;i<m_h;i++) { for(int j=0;j<a.m_w;j++) { for(int k=0;k<m_w;k++) { C[i][j] += m_dat[i][k] * a[k][j]; } } } return C; } mat Pow(ll x) { mat B(m_h,m_w); for(int i=0;i<m_h;i++) { B[i][i] = 1; } mat A = *this; while(x > 0) { if(x&1)B = B.Multiple(A); A = A.Multiple(A); x = x >> 1; } return B; } //friend ostream& operator<<(ostream &os, const mat &A); }; /* template<class Z> ostream& operator<<(ostream &os, Matrix<Z>& A) { for(int i=0;i<A.m_h;i++) { for(int j=0;j<A.m_w;j++) { os << A[i][j] << " "; } os << endl; } return os; } */ template<class T> using mat = MyMatrix<T>; //_____________________ following sorce code_________________________// const int max_n = 3 * (1e5) + 1; const int max_m = 83 * (1e5) + 1; int n,m,k; ll N; int h,w; string S; int a,b,c; vi v; int ans; double x,y,z; vector<int> G[1010101]; void solve() { int d; IN(n,d,k); OUT(n,d,k); vector<vector<Modint>> dp(n+2,vector<Modint>(k+2)); dp[0][0] = 1; vector<vector<Modint>> sum(n+2, vector<Modint>(k+2)); rep(i,k)sum[0][i+1] = sum[0][i] + dp[0][i]; For(i,1,n+1) { For(j,1,k+1) { dp[i][j] = sum[i-1][j] - sum[i-1][max(0,j-d)]; sum[i][j+1] = sum[i][j] + dp[i][j]; } } //fore(e,dp[n])pri(e); pri(dp[n][k]); } signed main (int argc, char* argv[]) { cin.tie(0); ios::sync_with_stdio(false); int cases=1; //IN(cases); while(cases--)solve(); //pri(ans); //for(auto c : ans){cout << c << endl;} //cout << fixed << setprecision(15) << ans << endl; return 0; }