結果
問題 | No.1073 無限すごろく |
ユーザー | 👑 Kazun |
提出日時 | 2020-06-07 17:33:06 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 63 ms / 2,000 ms |
コード長 | 5,088 bytes |
コンパイル時間 | 323 ms |
コンパイル使用メモリ | 82,192 KB |
実行使用メモリ | 70,968 KB |
最終ジャッジ日時 | 2024-06-06 06:12:46 |
合計ジャッジ時間 | 3,072 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
53,984 KB |
testcase_01 | AC | 41 ms
54,768 KB |
testcase_02 | AC | 54 ms
66,600 KB |
testcase_03 | AC | 42 ms
55,596 KB |
testcase_04 | AC | 41 ms
55,676 KB |
testcase_05 | AC | 48 ms
61,924 KB |
testcase_06 | AC | 49 ms
62,516 KB |
testcase_07 | AC | 49 ms
61,932 KB |
testcase_08 | AC | 47 ms
63,524 KB |
testcase_09 | AC | 49 ms
63,132 KB |
testcase_10 | AC | 48 ms
63,960 KB |
testcase_11 | AC | 49 ms
63,132 KB |
testcase_12 | AC | 48 ms
62,744 KB |
testcase_13 | AC | 54 ms
67,300 KB |
testcase_14 | AC | 55 ms
65,920 KB |
testcase_15 | AC | 54 ms
66,040 KB |
testcase_16 | AC | 56 ms
67,432 KB |
testcase_17 | AC | 54 ms
66,220 KB |
testcase_18 | AC | 56 ms
67,744 KB |
testcase_19 | AC | 53 ms
66,908 KB |
testcase_20 | AC | 55 ms
67,240 KB |
testcase_21 | AC | 63 ms
69,712 KB |
testcase_22 | AC | 55 ms
67,364 KB |
testcase_23 | AC | 58 ms
68,720 KB |
testcase_24 | AC | 59 ms
70,180 KB |
testcase_25 | AC | 58 ms
68,328 KB |
testcase_26 | AC | 58 ms
69,240 KB |
testcase_27 | AC | 58 ms
68,936 KB |
testcase_28 | AC | 60 ms
68,244 KB |
testcase_29 | AC | 59 ms
68,764 KB |
testcase_30 | AC | 62 ms
70,968 KB |
testcase_31 | AC | 62 ms
70,292 KB |
testcase_32 | AC | 62 ms
70,428 KB |
ソースコード
class Matrix_Error(Exception): pass class Matrix(): #入力 def __init__(self,M=[]): self.ele=M R=len(M) if R!=0: C=len(M[1]) else: C=0 self.row=R self.col=C self.size=(R,C) #出力 def __str__(self): T="" (r,c)=self.size for i in range(r): U="[" for j in range(c): U+=str(self.ele[i][j])+" " T+=U[:-1]+"]\n" return "["+T[:-1]+"]" #+,- def __pos__(self): return self def __neg__(self): return self.__scale__(-1) #加法 def __add__(A,B): if A.size!=B.size: raise Matrix_Error("2つの行列のサイズが異なります.({},{})".format(A.size,B.size)) M=A.ele N=B.ele L=[] for i in range(A.row): E=[] for j in range(A.col): E.append(M[i][j]+N[i][j]) L.append(E) return Matrix(L) #減法 def __sub__(A,B): return A+(-B) #乗法 def __mul__(A,B): if isinstance(B,Matrix): R=A.row C=B.col if A.col!=B.row: raise Matrix_Error("左側の列と右側の行が一致しません.({},{})".format(A.size,B.size)) G=A.col M=A.ele N=B.ele E=[] for i in range(R): F=[] for j in range(C): S=0 for k in range(G): S+=M[i][k]*N[k][j] F.append(S) E.append(F) return Matrix(E) elif isinstance(B,int): return A.__scale__(B) def __rmul__(A,B): if isinstance(B,int): return A*B #スカラー倍 def __scale__(A,r): M=A.ele L=[[r*M[i][j] for j in range(A.col)] for i in range(A.row)] return Matrix(L) #累乗 def __pow__(A,n): if A.row!=A.col: raise Matrix_Error("正方行列ではありません") if n<0: raise Matrix_Error("nが負です.") R=Matrix([[1*(i==j) for j in range(A.row)] for i in range(A.row)]) D=A while n>0: if n%2==1: R*=D D*=D n=n>>1 return R #等号 def __eq__(A,B): if A.size!=B.size: return False for i in range(A.row): for j in range(A.col): if A.ele[i][j]!=B.ele[i][j]: return False return True #不等号 def __neq__(A,B): return not(A==B) class Modulo_Error(Exception): pass class Modulo(): def __init__(self,a,n): self.a=a%n self.n=n def __str__(self): return "{} (mod {})".format(self.a,self.n) #+,- def __pos__(self): return self def __neg__(self): return Modulo(-self.a,self.n) #加法 def __add__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a+other.a,self.n) elif isinstance(other,int): return Modulo(self.a+other,self.n) def __radd__(self,other): if isinstance(other,int): return Modulo(self.a+other,self.n) #減法 def __sub__(self,other): return self+(-other) def __rsub__(self,other): if isinstance(other,int): return -self+other #乗法 def __mul__(self,other): if isinstance(other,Modulo): if self.n!=other.n: raise Modulo_Error("異なる法同士の演算です.") return Modulo(self.a*other.a,self.n) elif isinstance(other,int): return Modulo(self.a*other,self.n) def __rmul__(self,other): if isinstance(other,int): return Modulo(self.a*other,self.n) #Modulo逆数 def Modulo_Inverse(self): x0, y0, x1, y1 = 1, 0, 0, 1 a,b=self.a,self.n while b != 0: q, a, b = a // b, b, a % b x0, x1 = x1, x0 - q * x1 y0, y1 = y1, y0 - q * y1 if a!=1: raise Modulo_Error("{}の逆数が存在しません".format(self)) else: return Modulo(x0,self.n) #除法 def __truediv__(self,other): return self*other.Modulo_Inverse() #累乗 def __pow__(self,m): u=abs(m) r=Modulo(1,self.n) while u>0: if u%2==1: r*=self self*=self u=u>>1 if m>=0: return r else: return r.Modulo_Inverse() N=int(input()) a=Modulo(6,10**9+7).Modulo_Inverse() P=[[a,a,a,a,a,a],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0]] P=Matrix(P) print((P**N).ele[0][0].a)