結果
| 問題 |
No.898 tri-βutree
|
| コンテスト | |
| ユーザー |
iiljj
|
| 提出日時 | 2020-06-11 23:56:49 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 247 ms / 4,000 ms |
| コード長 | 9,781 bytes |
| コンパイル時間 | 2,841 ms |
| コンパイル使用メモリ | 212,956 KB |
| 最終ジャッジ日時 | 2025-01-11 01:37:03 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 21 |
ソースコード
/* #region Head */
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;
#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define PERM(c) \
sort(ALL(c)); \
for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define endl '\n'
#define sqrt sqrtl
#define floor floorl
#define log2 log2l
constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;
template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
for (T &x : vec) is >> x;
return is;
}
template <typename T> ostream &operator<<(ostream &os, vc<T> &vec) { // vector 出力 (for dump)
os << "{";
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
os << "}";
return os;
}
template <typename T> ostream &operator>>(ostream &os, vc<T> &vec) { // vector 出力 (inline)
REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
return os;
}
template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
is >> pair_var.first >> pair_var.second;
return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, pair<T, U> &pair_var) { // pair 出力
os << "(" << pair_var.first << ", " << pair_var.second << ")";
return os;
}
// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, T &map_var) {
os << "{";
REPI(itr, map_var) {
os << *itr;
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, map<T, U> &map_var) { return out_iter(os, map_var); }
template <typename T, typename U> ostream &operator<<(ostream &os, um<T, U> &map_var) {
os << "{";
REPI(itr, map_var) {
auto [key, value] = *itr;
os << "(" << key << ", " << value << ")";
auto itrcp = itr;
if (++itrcp != map_var.end()) os << ", ";
}
os << "}";
return os;
}
template <typename T> ostream &operator<<(ostream &os, set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, pq<T> &pq_var) {
pq<T> pq_cp(pq_var);
os << "{";
if (!pq_cp.empty()) {
os << pq_cp.top(), pq_cp.pop();
while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
}
return os << "}";
}
// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) {
DUMPOUT << head;
if (sizeof...(Tail) > 0) DUMPOUT << ", ";
dump_func(move(tail)...);
}
// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
if (comp(xmax, x)) {
xmax = x;
return true;
}
return false;
}
// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
if (comp(x, xmin)) {
xmin = x;
return true;
}
return false;
}
// ローカル用
#define DEBUG_
#ifdef DEBUG_
#define DEB
#define dump(...) \
DUMPOUT << " " << string(#__VA_ARGS__) << ": " \
<< "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl \
<< " ", \
dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif
struct AtCoderInitialize {
static constexpr int IOS_PREC = 15;
static constexpr bool AUTOFLUSH = false;
AtCoderInitialize() {
ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
cout << fixed << setprecision(IOS_PREC);
if (AUTOFLUSH) cout << unitbuf;
}
} ATCODER_INITIALIZE;
string yes = "Yes", no = "No";
// string yes = "YES", no = "NO";
void yn(bool p) { cout << (p ? yes : no) << endl; }
/* #endregion */
/* #region Graph */
// エッジ(本来エッジは双方向だが,ここでは単方向で管理)
template <class weight_t, class flow_t> struct Edge {
ll src; // エッジ始点となる頂点
ll dst; // エッジ終点となる頂点
weight_t weight; // 重み
flow_t cap;
Edge() : src(0), dst(0), weight(0) {}
Edge(ll src, ll dst, weight_t weight) : src(src), dst(dst), weight(weight) {}
Edge(ll src, ll dst, weight_t weight, flow_t cap) : src(src), dst(dst), weight(weight), cap(cap) {}
// Edge 標準出力
friend ostream &operator<<(ostream &os, Edge &edge) {
os << "(" << edge.src << " -> " << edge.dst << ", " << edge.weight << ")";
return os;
}
};
// 同じ頂点を始点とするエッジ集合
template <class weight_t, class flow_t> class Node : public vc<Edge<weight_t, flow_t>> {
public:
ll idx;
Node() : vc<Edge<weight_t, flow_t>>() {}
// void add(int a, int b, weight_t w, flow_t cap) { this->emplace_back(a, b, w, cap); };
};
// graph[i] := 頂点 i を始点とするエッジ集合
template <class weight_t, class flow_t> class Graph : public vc<Node<weight_t, flow_t>> {
public:
Graph() : vc<Node<weight_t, flow_t>>() {}
Graph(int n) : vc<Node<weight_t, flow_t>>(n) { REP(i, 0, n)(*this)[i].idx = i; }
// 単方向
void add_arc(int a, int b, weight_t w = 1, flow_t cap = 1) { (*this)[a].emplace_back(a, b, w, cap); }
// 双方向
void add_edge(int a, int b, weight_t w = 1, flow_t cap = 1) { add_arc(a, b, w, cap), add_arc(b, a, w, cap); }
};
// using Array = vc<Weight>;
// using Matrix = vc<Array>;
/* #endregion */
template <class weight_t, class flow_t> class LCA {
public:
const int n = 0;
const int log2_n = 0;
vc<vc<int>> parent;
vc<int> depth;
using G = Graph<weight_t, flow_t>;
LCA() {}
LCA(const G &g, int root) : n(g.size()), log2_n(log2(n) + 1), parent(log2_n, vc<int>(n)), depth(n) {
dfs(g, root, -1, 0);
for (int k = 0; k + 1 < log2_n; k++) {
for (int v = 0; v < (int)g.size(); v++) {
if (parent[k][v] < 0)
parent[k + 1][v] = -1;
else
parent[k + 1][v] = parent[k][parent[k][v]];
}
}
}
// 根からの距離と1つ先の頂点を求める
void dfs(const G &g, int v, int p, int d) {
parent[0][v] = p;
depth[v] = d;
for (auto &e : g[v]) {
if (e.dst != p) dfs(g, e.dst, v, d + 1);
}
}
int get(int u, int v) {
if (depth[u] > depth[v]) std::swap(u, v);
// LCA までの距離を同じにする
for (int k = 0; k < log2_n; k++) {
if ((depth[v] - depth[u]) >> k & 1) {
v = parent[k][v];
}
}
if (u == v) return u;
// 二分探索で LCA を求める
for (int k = log2_n - 1; k >= 0; k--) {
if (parent[k][u] != parent[k][v]) {
u = parent[k][u];
v = parent[k][v];
}
}
return parent[0][u];
}
};
// Problem
void solve() {
ll n;
cin >> n;
vll u(n - 1), v(n - 1), w(n - 1);
REP(i, 0, n - 1) cin >> u[i] >> v[i] >> w[i];
ll q;
cin >> q;
vll x(q), y(q), z(q);
REP(i, 0, q) cin >> x[i] >> y[i] >> z[i];
Graph<ll, ll> graph(n);
REP(i, 0, n - 1) graph.add_edge(u[i], v[i], w[i]);
vll depth(n);
auto dfs_depth = [&](auto &&dfs_depth, int idx, int par, ll d) -> void {
depth[idx] = d;
for (Edge<ll, ll> &e : graph[idx]) {
if (e.dst != par) dfs_depth(dfs_depth, e.dst, idx, d + e.weight);
}
};
dfs_depth(dfs_depth, 0, -1, 0);
LCA<ll, ll> lca(graph, 0);
auto f = [&](ll a, ll b) -> ll {
ll lcaidx = lca.get(a, b);
return depth[a] + depth[b] - 2 * depth[lcaidx];
};
REP(i, 0, q) { cout << ((f(x[i], y[i]) + f(y[i], z[i]) + f(z[i], x[i])) / 2) << endl; }
}
// entry point
int main() {
solve();
return 0;
}
iiljj