結果
| 問題 |
No.1078 I love Matrix Construction
|
| コンテスト | |
| ユーザー |
kcvlex
|
| 提出日時 | 2020-06-12 21:58:11 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,314 bytes |
| コンパイル時間 | 2,351 ms |
| コンパイル使用メモリ | 169,184 KB |
| 最終ジャッジ日時 | 2025-01-11 02:32:23 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 17 WA * 5 |
ソースコード
#define CPP17
#include <limits>
#include <initializer_list>
#include <utility>
#include <bitset>
#include <tuple>
#include <type_traits>
#include <functional>
#include <string>
#include <array>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <iterator>
#include <algorithm>
#include <complex>
#include <random>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <regex>
#include <cassert>
#include <cstddef>
#ifdef CPP17
#include <variant>
#endif
// Yay!!
#define endl codeforces
// macros for iterator
#define ALL(v) std::begin(v), std::end(v)
#define ALLR(v) std::rbegin(v), std::rend(v)
// alias
using ll = std::int64_t;
using ull = std::uint64_t;
using pii = std::pair<int, int>;
using tii = std::tuple<int, int, int>;
using pll = std::pair<ll, ll>;
using tll = std::tuple<ll, ll, ll>;
template <typename T> using vec = std::vector<T>;
template <typename T> using vvec = vec<vec<T>>;
// variadic min/max
template <typename T> const T& var_min(const T &t) { return t; }
template <typename T> const T& var_max(const T &t) { return t; }
template <typename T, typename... Tail> const T& var_min(const T &t, const Tail&... tail) { return std::min(t, var_min(tail...)); }
template <typename T, typename... Tail> const T& var_max(const T &t, const Tail&... tail) { return std::max(t, var_max(tail...)); }
// variadic chmin/chmax
template <typename T, typename... Tail> void chmin(T &t, const Tail&... tail) { t = var_min(t, tail...); }
template <typename T, typename... Tail> void chmax(T &t, const Tail&... tail) { t = var_max(t, tail...); }
// multi demension array
template <typename T, std::size_t Head, std::size_t... Tail> struct multi_dim_array { using type = std::array<typename multi_dim_array<T, Tail...>::type, Head>; };
template <typename T, std::size_t Head> struct multi_dim_array<T, Head> { using type = std::array<T, Head>; };
template <typename T, std::size_t... Args> using mdarray = typename multi_dim_array<T, Args...>::type;
#ifdef CPP17
// fill container
template <typename T, typename F, typename... Args>
void fill_seq(T &t, F f, Args... args) { if constexpr (std::is_invocable<F, Args...>::value) { t = f(args...); } else { for (ssize_t i = 0; i < t.size(); i++) fill_seq(t[i], f, args..., i); } }
#endif
// make multi dimension vector
template <typename T> vec<T> make_v(ssize_t sz) { return vec<T>(sz); }
template <typename T, typename... Tail> auto make_v(ssize_t hs, Tail&&... ts) { auto v = std::move(make_v<T>(std::forward<Tail>(ts)...)); return vec<decltype(v)>(hs, v); }
// init
namespace init__ {
struct InitIO { InitIO() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(30); } } init_io;
}
namespace graph {
using Node = ll;
using Weight = ll;
using Edge = std::pair<Node, Weight>;
template <bool Directed>
struct Graph : public vvec<Edge> {
using vvec<Edge>::vvec;
void add_edge(Node f, Node t, Weight w = 1) {
(*this)[f].emplace_back(t, w);
if (!Directed) (*this)[t].emplace_back(f, w);
}
Graph<Directed> build_inv() const {
Graph<Directed> ret(this->size());
for (Node i = 0; i < this->size(); i++) {
for (const Edge &e : (*this)[i]) {
Node j;
Weight w;
std::tie(j, w) = e;
if (!Directed && j < i) continue;
ret.add_edge(j, i, w);
}
}
return ret;
}
};
template <typename Iterator>
class dst_iterator {
Iterator ite;
public:
dst_iterator(Iterator ite) : ite(ite) { }
bool operator ==(const dst_iterator<Iterator> &oth) const {
return ite == oth.ite;
}
bool operator !=(const dst_iterator<Iterator> &oth) const {
return !(*this == oth);
}
bool operator <(const dst_iterator<Iterator> &oth) const {
return ite < oth.ite;
}
bool operator >(const dst_iterator<Iterator> &oth) const {
return ite > oth.ite;
}
bool operator <=(const dst_iterator<Iterator> &oth) const {
return ite <= oth.ite;
}
bool operator >=(const dst_iterator<Iterator> &oth) const {
return ite >= oth.ite;
}
const Node& operator *() {
return ite->first;
}
const Node& operator *() const {
return ite->first;
}
dst_iterator operator ++() {
++ite;
return ite;
}
};
class dst_iteration {
using ite_type = vec<Edge>::const_iterator;
const vec<Edge> &edges;
public:
dst_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.cbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.cend());
}
};
class dst_reverse_iteration {
using ite_type = vec<Edge>::const_reverse_iterator;
const vec<Edge> &edges;
public:
dst_reverse_iteration(const vec<Edge> &edges) : edges(edges) { }
auto begin() const {
return dst_iterator<ite_type>(edges.crbegin());
}
auto end() const {
return dst_iterator<ite_type>(edges.crend());
}
};
dst_iteration dst(const vec<Edge> &edges) {
return dst_iteration(edges);
}
dst_reverse_iteration rdst(const vec<Edge> &edges) {
return dst_reverse_iteration(edges);
}
}
namespace graph {
template <typename Graph>
class StronglyConnectedComponents {
const Graph &graph;
Graph rgraph;
vec<ll> label, scc_ord;
void dfs1(ll cur, ll &l) {
label[cur] = -2;
for (const graph::Edge &e : graph[cur]) {
ll nxt;
std::tie(nxt, std::ignore) = e;
if (label[nxt] != -1) continue;
dfs1(nxt, l);
}
label[cur] = l++;
}
void write_label() {
ll l = 0;
for (ll i = 0; i < graph.size(); i++) if (label[i] == -1) dfs1(i, l);
}
void dfs2(ll cur, ll l, ll &idx, vec<ll> &result) {
result[cur] = l;
scc_ord[idx++] = cur;
for (const graph::Edge &e : rgraph[cur]) {
ll nxt;
std::tie(nxt, std::ignore) = e;
if (result[nxt] != -1) continue;
dfs2(nxt, l, idx, result);
}
}
vec<ll> build_scc() {
ll l = 0;
vec<ll> result(graph.size(), -1), ord(rgraph.size());
std::iota(ALL(ord), 0ll);
std::sort(ALL(ord), [&](ll i, ll j) { return label[i] > label[j]; });
ll idx = 0;
for (ll n : ord) if (result[n] == -1) dfs2(n, l++, idx, result);
return result;
}
public:
StronglyConnectedComponents(const Graph &graph)
: graph(graph), label(graph.size(), -1), scc_ord(graph.size())
{
rgraph = graph.build_inv();
}
vec<ll> build() {
vec<ll> result(graph.size(), -1);
write_label();
return build_scc();
}
std::pair<::graph::Graph<true>, vec<ll>> build_scc_graph() {
auto scc_label = build();
::graph::Graph<true> scc_graph(*std::max_element(ALL(scc_label)) + 1);
for (ll from = 0; from < graph.size(); from++) for (auto &&e : graph[from]) {
ll to;
std::tie(to, std::ignore) = e;
ll lf = scc_label[from], lt = scc_label[to];
if (lf != lt) scc_graph.add_edge(lf, lt);
}
return std::make_pair(std::move(scc_graph), std::move(scc_label));
}
};
template <typename Graph> using SCC = StronglyConnectedComponents<Graph>;
}
int main() {
ll n;
std::cin >> n;
vec<ll> sv(n), tv(n), uv(n);
for (ll &e : sv) {
std::cin >> e;
e--;
}
for (ll &e : tv) {
std::cin >> e;
e--;
}
for (ll &e : uv) std::cin >> e;
auto make_id = [&](ll r, ll c) { return r * n + c; };
graph::Graph<true> g(2 * n * n);
for (ll i = 0; i < n; i++) for (ll j = 0; j < n; j++) {
ll r1 = sv[i], c1 = j;
ll r2 = j, c2 = tv[i];
ll id1 = make_id(r1, c1);
ll id2 = make_id(r2, c2);
ll nid1 = id1 + n * n, nid2 = id2 + n * n;
if (uv[i] == 0) {
// not 0 or not 0
// 1 => 0 and 1 => 0
g.add_edge(id1, nid2);
g.add_edge(id2, nid1);
} else if (uv[i] == 1) {
// not 1 or not 0
// 0 => 0 and 1 => 1
g.add_edge(nid1, nid2);
g.add_edge(id2, id1);
} else if (uv[i] == 2){
// not 0 or not 1
// 1 => 1 and 0 => 0
g.add_edge(id1, id2);
g.add_edge(nid2, nid1);
} else if (uv[i] == 3) {
// not 1 or not 1
// 0 => 1 and 0 => 1
g.add_edge(nid1, id2);
g.add_edge(nid2, id1);
}
}
graph::SCC<decltype(g)> scc(g);
auto label = scc.build();
auto ans = make_v<ll>(n, n);
for (ll i = 0; i < n * n; i++) {
if (label[i] == label[i + n * n]) {
std::cout << -1 << "\n";
return 0;
}
ll r = i / n, c = i % n;
if (label[i] > label[i + n * n]) ans[r][c] = 1;
else ans[r][c] = 0;
}
for (auto &&v : ans) for (ll i = 0; i < n; i++) std::cout << v[i] << " \n"[i + 1 == n];
return 0;
}
kcvlex