結果

問題 No.1078 I love Matrix Construction
ユーザー kimiyuki
提出日時 2020-06-12 22:00:58
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 261 ms / 2,000 ms
コード長 5,533 bytes
コンパイル時間 1,332 ms
コンパイル使用メモリ 109,896 KB
最終ジャッジ日時 2025-01-11 02:34:31
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:44:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   44 |     std::vector<int> acc(n); {
      |            ~~~~~^~~~~~~~~~
main.cpp:47:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   47 |             used[i] = true;
      |             ~^~~~~~~~~~~~~
main.cpp:52:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   52 |         reverse(ALL(acc));
      |         ~~~~~^~~~~~~~~~~~~
main.cpp:57:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   57 |         std::function<void (int)> rdfs = [&](int i) {
      |         ~~~~~^~~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1078"
#include <cassert>
#include <iostream>
#line 2 "/home/user/Library/utils/macros.hpp"
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) std::begin(x), std::end(x)
#line 3 "/home/user/Library/utils/two_satisfiability.hpp"
#include <utility>
#include <vector>
#line 2 "/home/user/Library/graph/strongly_connected_components.hpp"
#include <functional>
#line 4 "/home/user/Library/graph/transpose_graph.hpp"
/**
* @param g is an adjacent list of a digraph
* @note $O(V + E)$
* @see https://en.wikipedia.org/wiki/Transpose_graph
*/
std::vector<std::vector<int> > make_transpose_graph(std::vector<std::vector<int> > const & g) {
int n = g.size();
std::vector<std::vector<int> > h(n);
REP (i, n) {
for (int j : g[i]) {
h[j].push_back(i);
}
}
return h;
}
#line 7 "/home/user/Library/graph/strongly_connected_components.hpp"
/**
* @brief strongly connected components decomposition, Kosaraju's algorithm /
* @return the pair (the number k of components, the function from vertices of g to components)
* @param g is an adjacent list of a digraph
* @param g_rev is the transpose graph of g
* @note $O(V + E)$
*/
std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g, const std::vector<std::vector
    <int> > & g_rev) {
int n = g.size();
std::vector<int> acc(n); {
std::vector<bool> used(n);
std::function<void (int)> dfs = [&](int i) {
used[i] = true;
for (int j : g[i]) if (not used[j]) dfs(j);
acc.push_back(i);
};
REP (i,n) if (not used[i]) dfs(i);
reverse(ALL(acc));
}
int size = 0;
std::vector<int> component_of(n); {
std::vector<bool> used(n);
std::function<void (int)> rdfs = [&](int i) {
used[i] = true;
component_of[i] = size;
for (int j : g_rev[i]) if (not used[j]) rdfs(j);
};
for (int i : acc) if (not used[i]) {
rdfs(i);
++ size;
}
}
return { size, move(component_of) };
}
std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g) {
return decompose_to_strongly_connected_components(g, make_transpose_graph(g));
}
#line 6 "/home/user/Library/utils/two_satisfiability.hpp"
/**
* @brief 2-SAT ($O(N)$)
* @param n is the number of variables
* @param cnf is a proposition in a conjunctive normal form. Each literal is expressed as number $x$ s.t. $1 \le \vert x \vert \le n$
* @return a vector with the length $n$ if SAT. It's empty if UNSAT.
*/
std::vector<bool> compute_two_satisfiability(int n, const std::vector<std::pair<int, int> > & cnf) {
// make digraph
std::vector<std::vector<int> > g(2 * n);
auto index = [&](int x) {
assert (x != 0 and abs(x) <= n);
return x > 0 ? x - 1 : n - x - 1;
};
for (auto it : cnf) {
int x, y; std::tie(x, y) = it; // x or y
g[index(- x)].push_back(index(y)); // not x implies y
g[index(- y)].push_back(index(x)); // not y implies x
}
// do SCC
std::vector<int> component = decompose_to_strongly_connected_components(g).second;
std::vector<bool> valuation(n);
REP3 (x, 1, n + 1) {
if (component[index(x)] == component[index(- x)]) { // x iff not x
return std::vector<bool>(); // unsat
}
valuation[x - 1] = component[index(x)] > component[index(- x)]; // use components which indices are large
}
return valuation;
}
#line 6 "main.cpp"
using namespace std;
vector<vector<bool> > solve(int n, vector<int> & s, vector<int> & t, vector<int> & u) {
auto var = [&](int y, int x) { return y * n + x; };
vector<pair<int, int> > cnf;
REP (y, n) {
REP (x, n) {
int a = var(s[y], x) + 1;
int b = var(x, t[y]) + 1;
if (u[y] == 0) {
cnf.emplace_back(a, b);
} else if (u[y] == 1) {
cnf.emplace_back(- a, b);
} else if (u[y] == 2) {
cnf.emplace_back(a, - b);
} else if (u[y] == 3) {
cnf.emplace_back(- a, - b);
} else {
assert (false);
}
}
}
auto ev = compute_two_satisfiability(n * n, cnf);
if (ev.empty()) {
return vector<vector<bool> >();
} else {
vector<vector<bool> > a(n, vector<bool>(n));
REP (y, n) {
REP (x, n) {
a[y][x] = ev[var(y, x)];
}
}
return a;
}
}
int main() {
// input
int n; scanf("%d", &n);
vector<int> s(n);
REP (i, n) {
scanf("%d", &s[i]);
-- s[i];
}
vector<int> t(n);
REP (i, n) {
scanf("%d", &t[i]);
-- t[i];
}
vector<int> u(n);
REP (i, n) {
scanf("%d", &u[i]);
}
// solve
auto a = solve(n, s, t, u);
// output
if (a.empty()) {
printf("%d\n", -1);
} else {
REP (y, n) {
REP (x, n) {
printf("%d%c", (int)a[y][x], x + 1 < n ? ' ' : '\n');
}
}
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0