結果
問題 | No.1078 I love Matrix Construction |
ユーザー |
|
提出日時 | 2020-06-12 22:00:58 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 261 ms / 2,000 ms |
コード長 | 5,533 bytes |
コンパイル時間 | 1,332 ms |
コンパイル使用メモリ | 109,896 KB |
最終ジャッジ日時 | 2025-01-11 02:34:31 |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 22 |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:44:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 44 | std::vector<int> acc(n); { | ~~~~~^~~~~~~~~~ main.cpp:47:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 47 | used[i] = true; | ~^~~~~~~~~~~~~ main.cpp:52:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 52 | reverse(ALL(acc)); | ~~~~~^~~~~~~~~~~~~ main.cpp:57:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 57 | std::function<void (int)> rdfs = [&](int i) { | ~~~~~^~~~~~~~~~~~~
ソースコード
#line 1 "main.cpp"#define PROBLEM "https://yukicoder.me/problems/no/1078"#include <cassert>#include <iostream>#line 2 "/home/user/Library/utils/macros.hpp"#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))#define ALL(x) std::begin(x), std::end(x)#line 3 "/home/user/Library/utils/two_satisfiability.hpp"#include <utility>#include <vector>#line 2 "/home/user/Library/graph/strongly_connected_components.hpp"#include <functional>#line 4 "/home/user/Library/graph/transpose_graph.hpp"/*** @param g is an adjacent list of a digraph* @note $O(V + E)$* @see https://en.wikipedia.org/wiki/Transpose_graph*/std::vector<std::vector<int> > make_transpose_graph(std::vector<std::vector<int> > const & g) {int n = g.size();std::vector<std::vector<int> > h(n);REP (i, n) {for (int j : g[i]) {h[j].push_back(i);}}return h;}#line 7 "/home/user/Library/graph/strongly_connected_components.hpp"/*** @brief strongly connected components decomposition, Kosaraju's algorithm / 強連結成分分解* @return the pair (the number k of components, the function from vertices of g to components)* @param g is an adjacent list of a digraph* @param g_rev is the transpose graph of g* @note $O(V + E)$*/std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g, const std::vector<std::vector<int> > & g_rev) {int n = g.size();std::vector<int> acc(n); {std::vector<bool> used(n);std::function<void (int)> dfs = [&](int i) {used[i] = true;for (int j : g[i]) if (not used[j]) dfs(j);acc.push_back(i);};REP (i,n) if (not used[i]) dfs(i);reverse(ALL(acc));}int size = 0;std::vector<int> component_of(n); {std::vector<bool> used(n);std::function<void (int)> rdfs = [&](int i) {used[i] = true;component_of[i] = size;for (int j : g_rev[i]) if (not used[j]) rdfs(j);};for (int i : acc) if (not used[i]) {rdfs(i);++ size;}}return { size, move(component_of) };}std::pair<int, std::vector<int> > decompose_to_strongly_connected_components(const std::vector<std::vector<int> > & g) {return decompose_to_strongly_connected_components(g, make_transpose_graph(g));}#line 6 "/home/user/Library/utils/two_satisfiability.hpp"/*** @brief 2-SAT ($O(N)$)* @param n is the number of variables* @param cnf is a proposition in a conjunctive normal form. Each literal is expressed as number $x$ s.t. $1 \le \vert x \vert \le n$* @return a vector with the length $n$ if SAT. It's empty if UNSAT.*/std::vector<bool> compute_two_satisfiability(int n, const std::vector<std::pair<int, int> > & cnf) {// make digraphstd::vector<std::vector<int> > g(2 * n);auto index = [&](int x) {assert (x != 0 and abs(x) <= n);return x > 0 ? x - 1 : n - x - 1;};for (auto it : cnf) {int x, y; std::tie(x, y) = it; // x or yg[index(- x)].push_back(index(y)); // not x implies yg[index(- y)].push_back(index(x)); // not y implies x}// do SCCstd::vector<int> component = decompose_to_strongly_connected_components(g).second;std::vector<bool> valuation(n);REP3 (x, 1, n + 1) {if (component[index(x)] == component[index(- x)]) { // x iff not xreturn std::vector<bool>(); // unsat}valuation[x - 1] = component[index(x)] > component[index(- x)]; // use components which indices are large}return valuation;}#line 6 "main.cpp"using namespace std;vector<vector<bool> > solve(int n, vector<int> & s, vector<int> & t, vector<int> & u) {auto var = [&](int y, int x) { return y * n + x; };vector<pair<int, int> > cnf;REP (y, n) {REP (x, n) {int a = var(s[y], x) + 1;int b = var(x, t[y]) + 1;if (u[y] == 0) {cnf.emplace_back(a, b);} else if (u[y] == 1) {cnf.emplace_back(- a, b);} else if (u[y] == 2) {cnf.emplace_back(a, - b);} else if (u[y] == 3) {cnf.emplace_back(- a, - b);} else {assert (false);}}}auto ev = compute_two_satisfiability(n * n, cnf);if (ev.empty()) {return vector<vector<bool> >();} else {vector<vector<bool> > a(n, vector<bool>(n));REP (y, n) {REP (x, n) {a[y][x] = ev[var(y, x)];}}return a;}}int main() {// inputint n; scanf("%d", &n);vector<int> s(n);REP (i, n) {scanf("%d", &s[i]);-- s[i];}vector<int> t(n);REP (i, n) {scanf("%d", &t[i]);-- t[i];}vector<int> u(n);REP (i, n) {scanf("%d", &u[i]);}// solveauto a = solve(n, s, t, u);// outputif (a.empty()) {printf("%d\n", -1);} else {REP (y, n) {REP (x, n) {printf("%d%c", (int)a[y][x], x + 1 < n ? ' ' : '\n');}}}return 0;}