結果

問題 No.1078 I love Matrix Construction
ユーザー jell
提出日時 2020-06-12 22:05:56
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 317 ms / 2,000 ms
コード長 12,570 bytes
コンパイル時間 4,604 ms
コンパイル使用メモリ 238,388 KB
最終ジャッジ日時 2025-01-11 02:36:01
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma region preprocessor
#ifdef LOCAL
//*
#define _GLIBCXX_DEBUG // gcc
/*/
#define _LIBCPP_DEBUG 0 // clang
//*/
#define __clock__
// #define __buffer_check__
#else
#pragma GCC optimize("Ofast")
// #define __buffer_check__
// #define NDEBUG
#endif
#define __precision__ 15
#define iostream_untie true
#include <bits/stdc++.h>
#include <ext/rope>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)
#ifdef __clock__
#include "clock.hpp"
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
#ifdef LOCAL
#include "dump.hpp"
#define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n"
#else
#define dump(...) ((void)0)
#define mesg(str) ((void)0)
#endif
#pragma endregion // preprocessor
#pragma region std-overload
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr
        .first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const
        &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get
        <0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t
        ); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t
        ); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply
        (is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply
        (os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1
        >::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> =
        nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> =
        nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return
        os; }
} // namespace std
#pragma endregion // std-overload
#pragma region executive-setting
namespace setting
{
using namespace std;
using namespace chrono;
system_clock::time_point start_time, end_time;
long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
void print_elapsed_time() { cerr << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n\n"; }
void buffer_check() { char bufc; if(cin >> bufc) cerr << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
struct setupper
{
setupper()
{
if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
cout << fixed << setprecision(__precision__);
#ifdef stderr_path
freopen(stderr_path, "a", stderr);
#endif
#ifdef LOCAL
cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
#endif
#ifdef __clock__
start_time = system_clock::now();
atexit(print_elapsed_time);
#endif
#ifdef __buffer_check__
atexit(buffer_check);
#endif
}
} __setupper; // struct setupper
} // namespace setting
#pragma endregion // executive-setting
#pragma region fucntion-utility
// lambda wrapper for recursive method.
template <class lambda_type>
class make_recursive
{
lambda_type func;
public:
make_recursive(lambda_type &&f) : func(std::move(f)) {}
template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
// #define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
assert(__ok != __ng);
std::ptrdiff_t dist(__ng - __ok);
while(std::abs(dist) > 1)
{
iter_type mid(__ok + dist / 2);
if(pred(mid)) __ok = mid, dist -= dist / 2;
else __ng = mid, dist /= 2;
}
return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
assert(__ok != __ng);
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
assert(__first < __last);
std::ptrdiff_t dist(__last - __first);
while(dist > 2)
{
iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3);
if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
else __first = __left, dist -= dist / 3;
}
if(dist > 1 && comp(next(__first), __first)) ++__first;
return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
assert(__first < __last);
while(__last - __first > eps)
{
long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
if(comp(__left, __right)) __last = __right;
else __first = __left;
}
return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion // function-utility
#pragma region using-alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion // using-alias
#pragma region library
#ifndef strongly_connected_components_hpp
#define strongly_connected_components_hpp
#include <vector>
class strongly_connected_components
{
const size_t V;
std::vector<std::vector<size_t>> adj, mem;
std::vector<size_t> comp, low;
size_t cnt;
bool is_built;
public:
strongly_connected_components(size_t _V) : V(_V), adj(V), comp(V), low(V), is_built() {}
// add an edge from the vertex s to the vertex t.
void add_edge(size_t s, size_t t) { adj[s].emplace_back(t); is_built = false; dump(s,t); }
// the number of the components.
size_t count() { return build(), cnt; }
// the number of vertices in the i-th component.
size_t size(size_t i) { return build(), mem[i].size(); }
// vertices in the i-th component.
const std::vector<size_t> &component(size_t i) { return build(), mem[i]; }
// the component which the vertex v belongs to.
size_t operator[](size_t v) { return build(), comp[v]; }
// the directed acyclic graph consisting of the components.
std::vector<std::vector<size_t>> make_dag()
{
build();
std::vector<std::vector<size_t>> res(cnt);
bool *apr = new bool[V]{};
size_t *stack_ptr = new size_t[V];
for(size_t i = 0; i != cnt; ++i)
{
size_t *itr = stack_ptr;
for(size_t s : mem[i]) for(size_t t : adj[s]) if(!apr[comp[t]]) apr[comp[t]] = true, *itr++ = comp[t];
res[i].resize(itr - stack_ptr);
while(itr != stack_ptr) apr[res[i][--itr - stack_ptr] = *itr] = false;
}
delete[] apr; delete[] stack_ptr;
return res;
}
protected:
void build()
{
if(is_built) return;
is_built = true, cnt = 0;
fill(low.begin(), low.end(), -1);
fill(comp.begin(), comp.end(), -1);
size_t *itr = new size_t[V];
for(size_t v = 0, c = 0; v != V; ++v) affix(v, c, itr);
delete[] itr; mem.resize(cnt);
for(size_t v = 0; v != V; ++v) mem[comp[v] = cnt - 1 - comp[v]].emplace_back(v);
}
size_t affix(size_t v, size_t &c, size_t* &itr)
{
if(~low[v]) return ~comp[v] ? -1 : low[v];
size_t idx = c++; low[v] = idx; *itr++ = v;
for(int u : adj[v]) low[v] = std::min(low[v], affix(u, c, itr));
if(low[v] == idx) { do { comp[*--itr] = cnt; } while(*itr != v); ++cnt; }
return low[v];
}
}; // class strongly_connected_components
#endif // strongly_connected_components_hpp
#pragma endregion // library
#pragma region main-code
struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
unsigned t = 1;
#ifdef LOCAL
t = 1;
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--) solver();
}
struct solver
{
solver()
{
int n; cin>>n;
strongly_connected_components scc(n*n*2);
vector<int> s(n),t(n); cin>>s>>t;
for(int i=0; i<n; i++) s[i]--,t[i]--;
for(int i=0; i<n; ++i)
{
int u,v; cin>>u;
v=u>>1;
u&=1;
int src=0, nsrc=n*n;
if(u) swap(src,nsrc);
int dst=0, ndst=n*n;
if(v) swap(dst,ndst);
for(int j=0; j<n; j++)
{
int x=s[i]*n+j;
int y=j*n+t[i];
scc.add_edge(x+nsrc,y+dst);
scc.add_edge(y+ndst,x+src);
}
}
dump(scc.count());
vector ans(n,vector<int>(n));
for(int i=0; i<n*n; i++)
{
if(scc[i]==scc[i+n*n])
{
dump(i/n,i%n);
cout << -1 << "\n";
return;
}
if(scc[i]>scc[i+n*n])
{
ans[i/n][i%n]=1;
}
}
for(auto row: ans)
{
cout << row << "\n";
}
}
};
#pragma endregion // main-code
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0