結果

問題 No.1078 I love Matrix Construction
ユーザー jelljell
提出日時 2020-06-12 22:05:56
言語 C++17
(gcc 13.2.0 + boost 1.83.0)
結果
AC  
実行時間 159 ms / 2,000 ms
コード長 12,570 bytes
コンパイル時間 3,464 ms
コンパイル使用メモリ 237,320 KB
実行使用メモリ 56,764 KB
最終ジャッジ日時 2023-09-06 10:30:04
合計ジャッジ時間 7,218 ms
ジャッジサーバーID
(参考情報)
judge11 / judge12
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,376 KB
testcase_01 AC 2 ms
4,380 KB
testcase_02 AC 18 ms
10,860 KB
testcase_03 AC 50 ms
23,528 KB
testcase_04 AC 74 ms
31,488 KB
testcase_05 AC 53 ms
26,632 KB
testcase_06 AC 16 ms
10,564 KB
testcase_07 AC 6 ms
5,912 KB
testcase_08 AC 55 ms
26,732 KB
testcase_09 AC 4 ms
4,444 KB
testcase_10 AC 159 ms
56,764 KB
testcase_11 AC 78 ms
33,056 KB
testcase_12 AC 128 ms
47,548 KB
testcase_13 AC 143 ms
53,172 KB
testcase_14 AC 99 ms
37,540 KB
testcase_15 AC 136 ms
50,600 KB
testcase_16 AC 6 ms
5,488 KB
testcase_17 AC 1 ms
4,380 KB
testcase_18 AC 12 ms
8,672 KB
testcase_19 AC 28 ms
16,192 KB
testcase_20 AC 27 ms
16,028 KB
testcase_21 AC 3 ms
4,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region preprocessor
#ifdef LOCAL
//*
    #define _GLIBCXX_DEBUG  // gcc
/*/
    #define _LIBCPP_DEBUG 0 // clang
//*/
    #define __clock__
    // #define __buffer_check__
#else
    #pragma GCC optimize("Ofast")
    // #define __buffer_check__
    // #define NDEBUG
#endif
#define __precision__ 15
#define iostream_untie true
#include <bits/stdc++.h>
#include <ext/rope>
#define __all(v) std::begin(v), std::end(v)
#define __rall(v) std::rbegin(v), std::rend(v)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(n)
#define __clz64(n) __builtin_clzll(n)
#define __ctz32(n) __builtin_ctz(n)
#define __ctz64(n) __builtin_ctzll(n)

#ifdef __clock__
    #include "clock.hpp"
#else
    #define build_clock() ((void)0)
    #define set_clock() ((void)0)
    #define get_clock() ((void)0)
#endif

#ifdef LOCAL
    #include "dump.hpp"
    #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]  " << str << "\n"
#else
    #define dump(...) ((void)0)
    #define mesg(str) ((void)0)
#endif
#pragma endregion // preprocessor

#pragma region std-overload
namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#pragma endregion // std-overload

#pragma region executive-setting
namespace setting
{
    using namespace std;
    using namespace chrono;
    system_clock::time_point start_time, end_time;
    long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast<milliseconds>(end_time - start_time).count(); }
    void print_elapsed_time() { cerr << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n\n"; }
    void buffer_check() { char bufc; if(cin >> bufc) cerr << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; }
    struct setupper
    {
        setupper()
        {
            if(iostream_untie) ios::sync_with_stdio(false), cin.tie(nullptr);
            cout << fixed << setprecision(__precision__);
    #ifdef stderr_path
            freopen(stderr_path, "a", stderr);
    #endif
    #ifdef LOCAL
            cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
    #endif
    #ifdef __clock__
            start_time = system_clock::now();
            atexit(print_elapsed_time);
    #endif
    #ifdef __buffer_check__
            atexit(buffer_check);
    #endif
        }
    } __setupper; // struct setupper
} // namespace setting
#pragma endregion // executive-setting

#pragma region fucntion-utility
// lambda wrapper for recursive method.
template <class lambda_type>
class make_recursive
{
    lambda_type func;
public:
    make_recursive(lambda_type &&f) : func(std::move(f)) {}
    template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
// #define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
    assert(__ok != __ng);
    std::ptrdiff_t dist(__ng - __ok);
    while(std::abs(dist) > 1)
    {
        iter_type mid(__ok + dist / 2);
        if(pred(mid)) __ok = mid, dist -= dist / 2;
        else __ng = mid, dist /= 2;
    }
    return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
    assert(__ok != __ng);
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
    assert(__first < __last);
    std::ptrdiff_t dist(__last - __first);
    while(dist > 2)
    {
        iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3);
        if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
        else __first = __left, dist -= dist / 3;
    }
    if(dist > 1 && comp(next(__first), __first)) ++__first;
    return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
    assert(__first < __last);
    while(__last - __first > eps)
    {
        long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
        if(comp(__left, __right)) __last = __right;
        else __first = __left;
    }
    return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion // function-utility

#pragma region using-alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion // using-alias

#pragma region library

#ifndef strongly_connected_components_hpp
#define strongly_connected_components_hpp
#include <vector>

class strongly_connected_components
{
    const size_t V;
    std::vector<std::vector<size_t>> adj, mem;
    std::vector<size_t> comp, low;
    size_t cnt;
    bool is_built;

public:
    strongly_connected_components(size_t _V) : V(_V), adj(V), comp(V), low(V), is_built() {}

    // add an edge from the vertex s to the vertex t.
    void add_edge(size_t s, size_t t) { adj[s].emplace_back(t); is_built = false; dump(s,t); }

    // the number of the components.
    size_t count() { return build(), cnt; }

    // the number of vertices in the i-th component.
    size_t size(size_t i) { return build(), mem[i].size(); }

    // vertices in the i-th component.
    const std::vector<size_t> &component(size_t i) { return build(), mem[i]; }

    // the component which the vertex v belongs to.
    size_t operator[](size_t v) { return build(), comp[v]; }

    // the directed acyclic graph consisting of the components.
    std::vector<std::vector<size_t>> make_dag()
    {
        build();
        std::vector<std::vector<size_t>> res(cnt);
        bool *apr = new bool[V]{};
        size_t *stack_ptr = new size_t[V];
        for(size_t i = 0; i != cnt; ++i)
        {
            size_t *itr = stack_ptr;
            for(size_t s : mem[i]) for(size_t t : adj[s]) if(!apr[comp[t]]) apr[comp[t]] = true, *itr++ = comp[t];
            res[i].resize(itr - stack_ptr);
            while(itr != stack_ptr) apr[res[i][--itr - stack_ptr] = *itr] = false;
        }
        delete[] apr; delete[] stack_ptr;
        return res;
    }

protected:
    void build()
    {
        if(is_built) return;
        is_built = true, cnt = 0;
        fill(low.begin(), low.end(), -1);
        fill(comp.begin(), comp.end(), -1);
        size_t *itr = new size_t[V];
        for(size_t v = 0, c = 0; v != V; ++v) affix(v, c, itr);
        delete[] itr; mem.resize(cnt);
        for(size_t v = 0; v != V; ++v) mem[comp[v] = cnt - 1 - comp[v]].emplace_back(v);
    }

    size_t affix(size_t v, size_t &c, size_t* &itr)
    {
        if(~low[v]) return ~comp[v] ? -1 : low[v];
        size_t idx = c++; low[v] = idx; *itr++ = v;
        for(int u : adj[v]) low[v] = std::min(low[v], affix(u, c, itr));
        if(low[v] == idx) { do { comp[*--itr] = cnt; } while(*itr != v); ++cnt; }
        return low[v];
    }
}; // class strongly_connected_components

#endif // strongly_connected_components_hpp


#pragma endregion // library

#pragma region main-code
struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
    unsigned t = 1;
#ifdef LOCAL
    t = 1;
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--) solver();
}

struct solver
{

    solver()
    {
        int n; cin>>n;
        strongly_connected_components scc(n*n*2);
        vector<int> s(n),t(n); cin>>s>>t;
        for(int i=0; i<n; i++) s[i]--,t[i]--;

        for(int i=0; i<n; ++i)
        {
            int u,v; cin>>u;
            v=u>>1;
            u&=1;
            int src=0, nsrc=n*n;
            if(u) swap(src,nsrc);
            int dst=0, ndst=n*n;
            if(v) swap(dst,ndst);
            for(int j=0; j<n; j++)
            {
                int x=s[i]*n+j;
                int y=j*n+t[i];
                scc.add_edge(x+nsrc,y+dst);
                scc.add_edge(y+ndst,x+src);
            }
        }

        dump(scc.count());
        vector ans(n,vector<int>(n));
        for(int i=0; i<n*n; i++)
        {
            if(scc[i]==scc[i+n*n])
            {
                dump(i/n,i%n);
                cout << -1 << "\n";
                return;
            }
            if(scc[i]>scc[i+n*n])
            {
                ans[i/n][i%n]=1;
            }
        }

        for(auto row: ans)
        {
            cout << row << "\n";
        }

    }
};
#pragma endregion // main-code
0