結果

問題 No.1078 I love Matrix Construction
ユーザー ei1333333
提出日時 2020-06-12 22:07:51
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,215 ms / 2,000 ms
コード長 6,676 bytes
コンパイル時間 3,566 ms
コンパイル使用メモリ 212,184 KB
最終ジャッジ日時 2025-01-11 02:36:33
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
// const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
template< typename T = int >
struct Edge {
int from, to;
T cost;
int idx;
Edge() = default;
Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}
operator int() const { return to; }
};
template< typename T = int >
struct Graph {
vector< vector< Edge< T > > > g;
int es;
Graph() = default;
explicit Graph(int n) : g(n), es(0) {}
size_t size() const {
return g.size();
}
void add_directed_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es++);
}
void add_edge(int from, int to, T cost = 1) {
g[from].emplace_back(from, to, cost, es);
g[to].emplace_back(to, from, cost, es++);
}
void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
for(int i = 0; i < M; i++) {
int a, b;
cin >> a >> b;
a += padding;
b += padding;
T c = T(1);
if(weighted) cin >> c;
if(directed) add_directed_edge(a, b, c);
else add_edge(a, b, c);
}
}
};
template< typename T = int >
using Edges = vector< Edge< T > >;
/**
* @brief Strongly-Connected-Components()
*/
template< typename T = int >
struct StronglyConnectedComponents : Graph< T > {
public:
using Graph< T >::Graph;
using Graph< T >::g;
vector< int > comp;
Graph< T > dag;
vector< vector< int > > group;
void build() {
rg = Graph< T >(g.size());
for(int i = 0; i < g.size(); i++) {
for(auto &e : g[i]) {
rg.add_directed_edge(e.to, e.from, e.cost);
}
}
comp.assign(g.size(), -1);
used.assign(g.size(), 0);
for(int i = 0; i < g.size(); i++) dfs(i);
reverse(begin(order), end(order));
int ptr = 0;
for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;
dag = Graph< T >(ptr);
for(int i = 0; i < g.size(); i++) {
for(auto &e : g[i]) {
int x = comp[e.from], y = comp[e.to];
if(x == y) continue;
dag.add_directed_edge(x, y, e.cost);
}
}
group.resize(ptr);
for(int i = 0; i < g.size(); i++) {
group[comp[i]].emplace_back(i);
}
}
int operator[](int k) const {
return comp[k];
}
private:
vector< int > order, used;
Graph< T > rg;
void dfs(int idx) {
if(exchange(used[idx], true)) return;
for(auto &to : g[idx]) dfs(to);
order.push_back(idx);
}
void rdfs(int idx, int cnt) {
if(comp[idx] != -1) return;
comp[idx] = cnt;
for(auto &to : rg.g[idx]) rdfs(to, cnt);
}
};
/**
* @brief 2-SAT
*/
struct TwoSatisfiability : StronglyConnectedComponents< bool > {
public:
using StronglyConnectedComponents< bool >::g;
using StronglyConnectedComponents< bool >::comp;
using StronglyConnectedComponents< bool >::add_edge;
size_t sz;
explicit TwoSatisfiability(size_t v) : sz(v), StronglyConnectedComponents< bool >(v + v) {}
void add_if(int u, int v) {
// u -> v <=> !v -> !u
add_directed_edge(u, v);
add_directed_edge(rev(v), rev(u));
}
void add_or(int u, int v) {
// u or v <=> !u -> v
add_if(rev(u), v);
}
void add_nand(int u, int v) {
// u nand v <=> u -> !v
add_if(u, rev(v));
}
void set_true(int u) {
// u <=> !u -> u
add_directed_edge(rev(u), u);
}
void set_false(int u) {
// !u <=> u -> !u
add_directed_edge(u, rev(u));
}
inline int rev(int x) {
if(x >= sz) return x - sz;
return x + sz;
}
vector< int > solve() {
StronglyConnectedComponents< bool >::build();
vector< int > ret(sz);
for(int i = 0; i < sz; i++) {
if(comp[i] == comp[rev(i)]) return {};
ret[i] = comp[i] > comp[rev(i)];
}
return ret;
}
};
int main() {
int N;
cin >> N;
vector< int > S(N), T(N), U(N);
cin >> S >> T >> U;
for(auto &p : S) --p;
for(auto &p : T) --p;
TwoSatisfiability twosat(N * N);
for(int i = 0; i < N; i++) {
for(int j = 0; j < N; j++) {
int u = S[i] * N + j;
int v = j * N + T[i];
if(U[i] == 0) {
twosat.add_if(twosat.rev(u), v);
} else if(U[i] == 1) {
twosat.add_if(u, v);
} else if(U[i] == 2) {
twosat.add_if(twosat.rev(u), twosat.rev(v));
} else {
twosat.add_if(u, twosat.rev(v));
}
}
}
auto ret = twosat.solve();
if(ret.empty()) {
cout << -1 << "\n";
} else {
auto A = make_v< int >(N, N);
for(int i = 0; i < N; i++) {
for(int j = 0; j < N; j++) {
A[i][j]=ret[i*N+j];
}
cout << A[i] << "\n";
}
}
// U[i]=0
// S[i][j]=A[j][T[i]]=0
// U[i]=1
// S[i][j]=1, A[j][T[i]]=0
// U[i]=2
// S[i][j]=0, A[j][T[i]]=2
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0