結果
問題 | No.1073 無限すごろく |
ユーザー | penta |
提出日時 | 2020-06-12 22:59:44 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 8 ms / 2,000 ms |
コード長 | 6,167 bytes |
コンパイル時間 | 3,068 ms |
コンパイル使用メモリ | 199,172 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-24 05:44:06 |
合計ジャッジ時間 | 3,895 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 3 ms
6,812 KB |
testcase_02 | AC | 4 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 3 ms
6,944 KB |
testcase_05 | AC | 3 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 3 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 3 ms
6,940 KB |
testcase_14 | AC | 4 ms
6,940 KB |
testcase_15 | AC | 4 ms
6,944 KB |
testcase_16 | AC | 4 ms
6,944 KB |
testcase_17 | AC | 4 ms
6,940 KB |
testcase_18 | AC | 3 ms
6,944 KB |
testcase_19 | AC | 4 ms
6,944 KB |
testcase_20 | AC | 4 ms
6,940 KB |
testcase_21 | AC | 4 ms
6,940 KB |
testcase_22 | AC | 4 ms
6,940 KB |
testcase_23 | AC | 5 ms
6,940 KB |
testcase_24 | AC | 5 ms
6,940 KB |
testcase_25 | AC | 6 ms
6,940 KB |
testcase_26 | AC | 6 ms
6,940 KB |
testcase_27 | AC | 6 ms
6,940 KB |
testcase_28 | AC | 7 ms
6,944 KB |
testcase_29 | AC | 8 ms
6,944 KB |
testcase_30 | AC | 8 ms
6,944 KB |
testcase_31 | AC | 8 ms
6,940 KB |
testcase_32 | AC | 7 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> #define rep(i,n) for (int i = 0; i < (n); ++i) #define all(x) (x).begin(),(x).end() using namespace std; using ll = long long; using P = pair<int,int>; template <class T> void chmin(T &a, const T &b) noexcept { if (b < a) a = b; } template <class T> void chmax(T &a, const T &b) noexcept { if (a < b) a = b; } template <ll Modulo> struct modint { private: static constexpr ll mod = Modulo; public: ll x; modint(ll x=0):x((x%mod+mod)%mod){} modint operator-() const { return modint(-x);} modint& operator+=(const modint a) { if ((x += a.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint a) { (x *= a.x) %= mod; return *this;} modint operator+(const modint a) const { return modint(*this) += a;} modint operator-(const modint a) const { return modint(*this) -= a;} modint operator*(const modint a) const { return modint(*this) *= a;} modint pow(ll t) const { if (!t) return 1; modint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod modint inv() const { return pow(mod-2);} modint& operator/=(const modint a) { return *this *= a.inv();} modint operator/(const modint a) const { return modint(*this) /= a;} bool operator==(const modint rhs) const { return x == rhs.x; } bool operator!=(const modint rhs) const { return x != rhs.x; } bool operator<(const modint &a) const{ return x<a.x;}; static ll get_mod() { return mod; } }; struct Garner { private: vector<ll> r, m; ll extgcd(ll a, ll b, ll& x, ll& y) { for (ll u=y=1, v=x=0; a; ) { ll q = b / a; swap(x -= q*u, u); swap(y -= q*v, v); swap(b -= q*a, a); } return b; } inline ll mod_inv(ll a, ll mod) { ll x, y; extgcd(a, mod, x, y); return (mod + x % mod) % mod; } public: void push(ll v, ll mod) { r.emplace_back(v); m.emplace_back(mod); } ll get(ll mod) { r.emplace_back(0); m.emplace_back(mod); vector<ll> coffs(r.size(),1), constants(r.size(),0); for (int i = 0; i < (int)r.size()-1; ++i) { // solve "coffs[i] * v + constants[i] = r[i] (mod m[i])" ll v = (r[i] - constants[i]) * mod_inv(coffs[i], m[i]) % m[i]; if (v < 0) v += m[i]; for (int j = i+1; j < (int)r.size(); ++j) { (constants[j] += coffs[j] * v) %= m[j]; (coffs[j] *= m[i]) %= m[j]; } } return constants.back(); } }; template<typename ModInt> struct NTT { private: using mi = ModInt; static mi primitive_root() { ll p = mi{}.get_mod(); if (p == 167772161) return 3; else if (p == 469762049) return 3; else if (p == 1224736769) return 3; else if (p == 998244353) return 3; return 0; } unsigned bitreverse32(unsigned x) { x = ((x & 0x55555555) << 1) | ((x >> 1) & 0x55555555); x = ((x & 0x33333333) << 2) | ((x >> 2) & 0x33333333); x = ((x & 0x0F0F0F0F) << 4) | ((x >> 4) & 0x0F0F0F0F); x = (x << 24) | ((x & 0xFF00) << 8) | ((x >> 8) & 0xFF00) | (x >> 24); return x; } public: void ntt(vector<mi> &A, const int k, bool inverse = false) { if (k == 0) return; for (int i = 1; i < (1<<k); ++i) { int ind = bitreverse32(i) >> (32-k); if (ind > i) { std::swap(A[i], A[ind]); } } for (int i = 1; i <= k; ++i) { //N = (1<<i) mi w = primitive_root().pow((mi(-1)/(1<<i)).x); if (inverse) w = mi(1) / w; for (int j = 0; j < (1<<(k-i)); ++j) { mi base = 1; for (int l = 0; l < (1<<(i-1)); ++l) { //l = 0,1...N/2-1 mi s = A[(1<<i)*j + l]; mi t = A[(1<<i)*j + l + (1<<(i-1))] * base; A[(1<<i)*j + l] = s + t; A[(1<<i)*j + l + (1<<(i-1))] = s - t; base *= w; } } } if (inverse) { for (int i = 0; i < (1<<k); ++i) A[i] /= (1<<k); } } vector<ll> convolve(const vector<ll>& A, const vector<ll>& B){ int siz = A.size() + B.size() - 1; int k = 0; while (siz >= (1<<k)) k++; vector<mi> CA(1<<k,0), CB(1<<k,0); for (int i = 0; i < (int)A.size(); ++i) CA[i] = A[i]; for (int i = 0; i < (int)B.size(); ++i) CB[i] = B[i]; ntt(CA, k, false); ntt(CB, k, false); vector<mi> CC(1<<k); for (int i = 0; i < (1<<k); ++i) { CC[i] = CA[i] * CB[i]; } ntt(CC, k, true); vector<ll> C(siz); for (int i = 0; i < siz; ++i) C[i] = CC[i].x; return C; } }; vector<ll> ntt_convolve(vector<ll> &A, vector<ll> &B, ll mod = 1224736769) { if (mod == 998244353) { NTT<modint<998244353> > ntt; return ntt.convolve(A,B); } NTT<modint<167772161> > ntt1; NTT<modint<469762049> > ntt2; NTT<modint<1224736769> > ntt3; vector<ll> C1 = ntt1.convolve(A,B); vector<ll> C2 = ntt2.convolve(A,B); vector<ll> C3 = ntt3.convolve(A,B); vector<ll> res(C1.size()); for (int i = 0; i < (int)C1.size(); ++i) { Garner garner; garner.push(C1[i], 167772161); garner.push(C2[i], 469762049); garner.push(C3[i], 1224736769); res[i] = garner.get(mod); } return res; } ll coef_of_G(vector<ll> P, vector<ll> Q, ll n, const ll mod = 1000000007) { assert(P.size() + 1 == Q.size()); while (n > 0) { vector<ll> NQ = Q; for (int i=1; i<(int)Q.size(); i+=2) { //Q(-z) NQ[i] *= -1; NQ[i] %= mod; if (NQ[i] < 0) NQ[i] += mod; } auto PNQ = ntt_convolve(P, NQ, mod); //P(z)Q(-z) if (n&1) { for (int i=0; i<(int)P.size(); ++i) P[i] = PNQ[2*i+1]; } else { for (int i=0; i<(int)P.size(); ++i) P[i] = PNQ[2*i]; } auto QNQ = ntt_convolve(Q, NQ, mod); //Q(z)Q(-z) for (int i=0; i<(int)Q.size(); ++i) Q[i] = QNQ[2*i]; n /= 2; } return P[0]; } int main() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(15); ll n; cin >> n; using mint = modint<1000000007>; mint prob = mint(-1)/6; vector<ll> P = {1, 0, 0, 0, 0, 0}; vector<ll> Q = {1, prob.x, prob.x, prob.x, prob.x, prob.x, prob.x}; cout << coef_of_G(P, Q, n, 1000000007) << endl; return 0; }