結果

問題 No.1078 I love Matrix Construction
ユーザー masayoshi361
提出日時 2020-06-13 11:58:55
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 362 ms / 2,000 ms
コード長 7,462 bytes
コンパイル時間 2,487 ms
コンパイル使用メモリ 190,280 KB
実行使用メモリ 89,772 KB
最終ジャッジ日時 2024-06-25 00:04:54
合計ジャッジ時間 7,740 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

//header
#ifdef LOCAL
#include "cxx-prettyprint-master/prettyprint.hpp"
#define debug(x) cout << x << endl
#else
#define debug(...) 42
#endif
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
//types
using namespace std;
using ll = long long;
using ul = unsigned long long;
using ld = long double;
typedef pair < ll , ll > Pl;
typedef pair < int, int > Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
template< typename T >
using mat = vector< vector< T > >;
template< int mod >
struct modint {
int x;
modint() : x(0) {}
modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
modint &operator+=(const modint &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
modint &operator*=(const modint &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-x); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return x == p.x; }
bool operator!=(const modint &p) const { return x != p.x; }
modint inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return modint(u);
}
modint pow(int64_t n) const {
modint ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const modint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, modint &a) {
int64_t t;
is >> t;
a = modint< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
//abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define SZ(x) ((int)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
#define print(x) cout << x << endl
#define vsum(x) accumulate(x, 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
//functions
ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
template< typename T >
T mypow(T x, ll n) {
T ret = 1;
while(n > 0) {
if(n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ll modpow(ll x, ll n, const ll mod) {
ll ret = 1;
while(n > 0) {
if(n & 1) (ret *= x);
(x *= x);
n >>= 1;
x%=mod;
ret%=mod;
}
return ret;
}
uint64_t my_rand(void) {
static uint64_t x = 88172645463325252ULL;
x = x ^ (x << 13); x = x ^ (x >> 7);
return x = x ^ (x << 17);
}
//graph template
template< typename T >
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
//constant
#define inf 1000000005
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.0001;
const long double PI = 3.141592653589793;
//library
//dfsO(V+E)
template< typename G >
struct StronglyConnectedComponents {
const G &g;
UnWeightedGraph gg, rg;//
vector< int > comp, order, used;//id, dfs
StronglyConnectedComponents(G &g) : g(g), gg(g.size()), rg(g.size()), comp(g.size(), -1), used(g.size()) {
for(int i = 0; i < g.size(); i++) {
for(auto e : g[i]) {
gg[i].emplace_back((int) e);
rg[(int) e].emplace_back(i);
}
}
}
// return id of its component
int operator[](int k) {
return comp[k];
}
//dfs
void dfs(int idx) {
if(used[idx]) return;
used[idx] = true;
for(int to : gg[idx]) dfs(to);
order.push_back(idx);
}
//dfs
void rdfs(int idx, int cnt) {
if(comp[idx] != -1) return;
comp[idx] = cnt;
for(int to : rg[idx]) rdfs(to, cnt);
}
//t
//
void build(UnWeightedGraph &t) {
for(int i = 0; i < gg.size(); i++) dfs(i);
reverse(begin(order), end(order));
int ptr = 0;
for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;
t.resize(ptr);
for(int i = 0; i < g.size(); i++) {
for(auto &to : g[i]) {
int x = comp[i], y = comp[to];
if(x == y) continue;
t[x].push_back(y);
}
}
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(0);
cout << setprecision(20);
int n; cin>>n;
vi s(n), t(n), u(n);
rep(i, n)cin>>s[i], s[i]--;
rep(i, n)cin>>t[i], t[i]--;
rep(i, n)cin>>u[i], u[i];
mat<int> ans(n, vi(n));
mat<int> g(n*n*2);
rep(i, n)rep(j, n){
int s0 = s[i]*n+j, t0 = j*n+t[i];
int s1 = s0+n*n, t1 = t0+n*n;
if(u[i]==0){
g[s0].pb(t1);
g[t0].pb(s1);
}else if(u[i]==1){
g[s1].pb(t1);
g[t0].pb(s0);
}else if(u[i]==2){
g[s0].pb(t0);
g[t1].pb(s1);
}else{
g[s1].pb(t0);
g[t1].pb(s0);
}
}
StronglyConnectedComponents<mat<int>> scc(g);
UnWeightedGraph topo;
scc.build(topo);
rep(i, n){
rep(j, n){
int v = i*n+j;
if(scc[v]==scc[v+n*n]){
cout << -1 << endl;
return 0;
}
if(scc[v]<scc[v+n*n]){
ans[i][j] = 1;
}else{
ans[i][j] = 0;
}
}
}
rep(i, n){
rep(j, n)cout << ans[i][j] << ' ';
cout << endl;
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0