結果

問題 No.1038 TreeAddQuery
ユーザー 👑 emthrmemthrm
提出日時 2020-06-17 09:06:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 7,271 bytes
コンパイル時間 3,499 ms
コンパイル使用メモリ 254,964 KB
実行使用メモリ 301,516 KB
最終ジャッジ日時 2024-07-03 12:07:14
合計ジャッジ時間 59,014 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 20 ms
6,944 KB
testcase_04 AC 23 ms
7,168 KB
testcase_05 AC 22 ms
7,648 KB
testcase_06 AC 19 ms
6,940 KB
testcase_07 AC 25 ms
7,388 KB
testcase_08 AC 2,650 ms
203,856 KB
testcase_09 AC 3,035 ms
222,480 KB
testcase_10 AC 3,166 ms
224,688 KB
testcase_11 AC 3,301 ms
222,128 KB
testcase_12 AC 3,289 ms
228,336 KB
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
testcase_17 AC 3,907 ms
249,140 KB
testcase_18 AC 541 ms
94,500 KB
testcase_19 AC 737 ms
105,424 KB
testcase_20 AC 737 ms
105,008 KB
testcase_21 AC 900 ms
118,500 KB
testcase_22 AC 1,295 ms
147,568 KB
testcase_23 AC 1,584 ms
156,440 KB
testcase_24 AC 2,601 ms
212,620 KB
testcase_25 TLE -
testcase_26 AC 2,480 ms
200,824 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3fLL;
const double EPS = 1e-8;
const int MOD = 1000000007;
// const int MOD = 998244353;
const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
const int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    cin.tie(nullptr);
    ios_base::sync_with_stdio(false);
    cout << fixed << setprecision(20);
  }
} iosetup;

using CostType = bool;
struct Edge {
  int src, dst; CostType cost;
  Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
  inline bool operator<(const Edge &x) const {
    return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
  }
  inline bool operator<=(const Edge &x) const { return !(x < *this); }
  inline bool operator>(const Edge &x) const { return x < *this; }
  inline bool operator>=(const Edge &x) const { return !(*this < x); }
};

struct CentroidDecomposition {
  int root;
  vector<vector<int>> comp;
  vector<int> par;

  CentroidDecomposition(const vector<vector<Edge>> &graph) : graph(graph) {
    int n = graph.size();
    alive.assign(n, true);
    subtree.resize(n);
    comp.resize(n);
    par.assign(n, -1);
    root = build(0);
  }

private:
  const vector<vector<Edge>> graph;
  vector<bool> alive;
  vector<int> subtree;

  int build(int s) {
    int centroid = search_centroid(-1, s, calc_subtree(-1, s) / 2);
    alive[centroid] = false;
    for (const Edge &e : graph[centroid]) {
      if (alive[e.dst]) {
        comp[centroid].emplace_back(build(e.dst));
        par[e.dst] = centroid;
      }
    }
    alive[centroid] = true;
    return centroid;
  }

  int calc_subtree(int par, int ver) {
    subtree[ver] = 1;
    for (const Edge &e : graph[ver]) {
      if (e.dst != par && alive[e.dst]) subtree[ver] += calc_subtree(ver, e.dst);
    }
    return subtree[ver];
  }

  int search_centroid(int par, int ver, int half) {
    for (const Edge &e : graph[ver]) {
      if (e.dst != par && alive[e.dst]) {
        if (subtree[e.dst] > half) return search_centroid(ver, e.dst, half);
      }
    }
    return ver;
  }
};

template <typename Abelian>
struct BITRangeAdd {
  BITRangeAdd(int n_, const Abelian UNITY = 0) : n(n_), UNITY(UNITY) {
    ++n;
    dat_const.assign(n, UNITY);
    dat_linear.assign(n, UNITY);
  }

  void add(int left, int right, Abelian val) {
    if (right < ++left) return;
    for (int i = left; i < n; i += i & -i) {
      dat_const[i] -= val * (left - 1);
      dat_linear[i] += val;
    }
    for (int i = right + 1; i < n; i += i & -i) {
      dat_const[i] += val * right;
      dat_linear[i] -= val;
    }
  }

  Abelian sum(int idx) {
    Abelian res = UNITY;
    for (int i = idx; i > 0; i -= i & -i) res += dat_linear[i];
    res *= idx;
    for (int i = idx; i > 0; i -= i & -i) res += dat_const[i];
    return res;
  }

  Abelian sum(int left, int right) {
    if (right <= left) return UNITY;
    return sum(right) - sum(left);
  }

  Abelian operator[](const int idx) { return sum(idx, idx + 1); }

  int n;
private:
  const Abelian UNITY;
  vector<Abelian> dat_const, dat_linear;
};

int main() {
  int n, q; cin >> n >> q;
  vector<vector<Edge>> graph(n);
  REP(_, n - 1) {
    int a, b; cin >> a >> b; --a; --b;
    graph[a].emplace_back(a, b);
    graph[b].emplace_back(b, a);
  }
  CentroidDecomposition cd(graph);
  vector<bool> visited(n, false);
  vector<map<int, int>> mp;
  vector<vector<int>> resp(n), depth;
  vector<BITRangeAdd<ll>> bit;
  vector<map<int, pair<int, int>>> minus(n);
  vector<vector<BITRangeAdd<ll>>> bit2;
  function<void(int)> rec = [&](int root) {
    // cout << root << '\n';
    visited[root] = true;
    int idx = mp.size();
    mp.emplace_back();
    mp[idx][root] = 0;
    resp[root].emplace_back(idx);
    depth.emplace_back(vector<int>{0});
    vector<int> que{root};
    for (int dep = 1; !que.empty(); ++dep) {
      vector<int> nx;
      for (int ver : que) {
        for (const Edge &e : graph[ver]) {
          if (!visited[e.dst] && mp[idx].count(e.dst) == 0) {
            // cout << root << ' ' << e.dst << '\n';
            int sz = mp[idx].size();
            mp[idx][e.dst] = sz;
            resp[e.dst].emplace_back(idx);
            depth[idx].emplace_back(dep);
            nx.emplace_back(e.dst);
          }
        }
      }
      que.swap(nx);
    }
    bit.emplace_back(mp[idx].size());
    // cout << root << endl;
    minus[root][idx] = {-1, 0};
    bit2.emplace_back();
    int bit2_idx = 0;
    for (const Edge &dst : graph[root]) {
      if (visited[dst.dst]) continue;
      // cout << dst.dst << endl;
      int max_depth = 0;
      function<void(int, int, int)> dfs = [&](int par, int ver, int dep) {
        // cout << par << ' ' << ver << ' ' << dep << endl;
        chmax(max_depth, dep);
        minus[ver][idx] = {bit2_idx, dep};
        for (const Edge &e : graph[ver]) {
          if (!visited[e.dst] && e.dst != par) dfs(ver, e.dst, dep + 1);
        }
      };
      dfs(root, dst.dst, 1);
      bit2[idx].emplace_back(max_depth + 1);
      ++bit2_idx;
    }
    for (int e : cd.comp[root]) {
      if (!visited[e]) rec(e);
    }
  };
  rec(cd.root);
  // REP(i, n) {
  //   cout << i << ": ";
  //   for (auto [key, val] : mp[i]) cout << '(' << key << ',' << val << ") ";
  //   cout << '\n';
  // }
  // REP(i, n) {
  //   cout << i << ": ";
  //   for (int e : resp[i]) cout << e << ' ';
  //   cout << '\n';
  // }
  // REP(i, n) {
  //   cout << i << ": ";
  //   for (int e : depth[i]) cout << e << ' ';
  //   cout << '\n';
  // }
  // REP(i, n) {
  //   cout << i << ": ";
  //   for (auto [key, val] : minus[i]) cout << '(' << key << ',' << '(' << val.first << ',' << val.second << ")) ";
  //   cout << '\n';
  // }
  while (q--) {
    int x, y, z; cin >> x >> y >> z; --x;
    ll ans = 0;
    for (int idx : resp[x]) {
      ans += bit[idx][mp[idx][x]];
      auto [bit2_idx, dep] = minus[x][idx];
      // cout << idx << ": " << bit2_idx << ' ' << dep << endl;
      if (bit2_idx != -1) ans -= bit2[idx][bit2_idx][dep];
    }
    cout << ans << '\n';
    for (int idx : resp[x]) {
      int ver = mp[idx][x], dist = y - depth[idx][ver];
      // cout << idx << ' ' << ver << ' ' << dist << ": ";
      if (dist >= 0) {
        int l = 0, r = depth[idx].size();
        while (r - l > 1) {
          int mid = (l + r) >> 1;
          (depth[idx][mid] <= dist ? l : r) = mid;
        }
        bit[idx].add(0, l + 1, z);
        auto [bit2_idx, ignore] = minus[x][idx];
        // cout << l << ' ' << bit2_idx << ' ' << dep;
        if (bit2_idx != -1) bit2[idx][bit2_idx].add(0, min(dist, bit2[idx][bit2_idx].n - 2) + 1, z);
      }
      // cout << endl;
    }
    // REP(i, n) {
    //   REP(j, bit[i].n - 1) cout << bit[i][j] << " \n"[j + 2 == bit[i].n];
    // }
    // cout << "-----" << endl;
  }
  return 0;
}
0