結果
問題 | No.1073 無限すごろく |
ユーザー | yoshig0731 |
提出日時 | 2020-06-18 16:25:18 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 1 ms / 2,000 ms |
コード長 | 21,454 bytes |
コンパイル時間 | 12,230 ms |
コンパイル使用メモリ | 404,592 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-03 12:51:45 |
合計ジャッジ時間 | 13,230 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 0 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 0 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,944 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 1 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 1 ms
6,944 KB |
testcase_13 | AC | 1 ms
6,940 KB |
testcase_14 | AC | 1 ms
6,944 KB |
testcase_15 | AC | 1 ms
6,944 KB |
testcase_16 | AC | 1 ms
6,944 KB |
testcase_17 | AC | 1 ms
6,940 KB |
testcase_18 | AC | 1 ms
6,944 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,948 KB |
testcase_22 | AC | 1 ms
6,940 KB |
testcase_23 | AC | 1 ms
6,944 KB |
testcase_24 | AC | 1 ms
6,940 KB |
testcase_25 | AC | 1 ms
6,940 KB |
testcase_26 | AC | 1 ms
6,940 KB |
testcase_27 | AC | 1 ms
6,944 KB |
testcase_28 | AC | 1 ms
6,940 KB |
testcase_29 | AC | 1 ms
6,940 KB |
testcase_30 | AC | 1 ms
6,944 KB |
testcase_31 | AC | 1 ms
6,940 KB |
testcase_32 | AC | 1 ms
6,940 KB |
コンパイルメッセージ
warning: unused import: `std::f64::consts::PI` --> src/main.rs:3:5 | 3 | use std::f64::consts::PI; | ^^^^^^^^^^^^^^^^^^^^ | = note: `#[warn(unused_imports)]` on by default warning: unused import: `std::str::*` --> src/main.rs:5:5 | 5 | use std::str::*; | ^^^^^^^^^^^ warning: unused macro definition: `min` --> src/main.rs:62:14 | 62 | macro_rules! min { | ^^^ | = note: `#[warn(unused_macros)]` on by default warning: unused macro definition: `chmin` --> src/main.rs:74:14 | 74 | macro_rules! chmin { | ^^^^^ warning: unused macro definition: `max` --> src/main.rs:86:14 | 86 | macro_rules! max { | ^^^ warning: unused macro definition: `chmax` --> src/main.rs:98:14 | 98 | macro_rules! chmax { | ^^^^^ warning: the item `Write` is imported redundantly --> src/main.rs:133:13 | 4 | use std::io::*; | ---------- the item `Write` is already imported here ... 133 | use std::io::Write; | ^^^^^^^^^^^^^^ warning: the item `Read` is imported redundantly --> src/main.rs:138:13 | 4 | use std::io::*; | ---------- the item `Read` is already imported here ... 138 | use std::io::Read; | ^^^^^^^^^^^^^ warning: the item `BinaryHeap` is imported redundantly --> src/main.rs:264:9 | 2 | use std::collections::*; | ------------------- the item `BinaryHeap` is already imported here ... 264 | use std::collections::BinaryHeap; | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ warning: unused variable: `tar` --> src/main.rs:517:19 | 517 | fn act(&self, tar: &Self::T, x: usize) -> Self::T { | ^^^ help: if this is intentional, prefix it with an underscore: `_tar` | = note: `#[warn(unused_variables)]` on by default warning: unused variable: `x` --> src/main.rs:517:34 | 517 | fn act(&self, tar: &Self::T, x: usize) -> Self::T { |
ソースコード
use std::cmp::*; use std::collections::*; use std::f64::consts::PI; use std::io::*; use std::str::*; use std::string::*; macro_rules! read { (($($t:tt),*)) => { ( $(read!($t)),* ) }; ([[$t:tt; $len1:expr]; $len2:expr]) => { (0..$len2).map(|_| read!([$t; $len1])).collect::<Vec<_>>() }; ([$t:tt; $len:expr]) => { (0..$len).map(|_| read!($t)).collect::<Vec<_>>() }; (chars) => { read!(String).chars().collect::<Vec<char>>() }; (usize1) => { read!(usize) - 1 }; ($t:ty) => {{ let stdin = stdin(); let stdin = stdin.lock(); let token: String = stdin .bytes() .map(|c| c.unwrap() as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect(); token.parse::<$t>().unwrap() }}; } macro_rules! input { (mut $name:ident: $t:tt, $($r:tt)*) => { let mut $name = read!($t); input!($($r)*); }; (mut $name:ident: $t:tt) => { let mut $name = read!($t); }; ($name:ident: $t:tt, $($r:tt)*) => { let $name = read!($t); input!($($r)*); }; ($name:ident: $t:tt) => { let $name = read!($t); }; } macro_rules! min { ($a:expr $(,)*) => {{ $a }}; ($a:expr, $b:expr $(,)*) => {{ std::cmp::min($a, $b) }}; ($a:expr, $($rest:expr),+ $(,)*) => {{ std::cmp::min($a, min!($($rest),+)) }}; } macro_rules! chmin { ($base:expr, $($cmps:expr),+ $(,)*) => {{ let cmp_min = min!($($cmps),+); if $base > cmp_min { $base = cmp_min; true } else { false } }}; } macro_rules! max { ($a:expr $(,)*) => {{ $a }}; ($a:expr, $b:expr $(,)*) => {{ std::cmp::max($a, $b) }}; ($a:expr, $($rest:expr),+ $(,)*) => {{ std::cmp::max($a, max!($($rest),+)) }}; } macro_rules! chmax { ($base:expr, $($cmps:expr),+ $(,)*) => {{ let cmp_max = max!($($cmps),+); if $base < cmp_max { $base = cmp_max; true } else { false } }}; } #[derive(Eq, PartialEq, Clone, Debug)] pub struct Rev<T>(pub T); impl<T: PartialOrd> PartialOrd for Rev<T> { fn partial_cmp(&self, other: &Rev<T>) -> Option<std::cmp::Ordering> { other.0.partial_cmp(&self.0) } } impl<T: Ord> Ord for Rev<T> { fn cmp(&self, other: &Rev<T>) -> std::cmp::Ordering { other.0.cmp(&self.0) } } struct IO<R, W: std::io::Write>(R, std::io::BufWriter<W>); impl<R: std::io::Read, W: std::io::Write> IO<R, W> { pub fn new(r: R, w: W) -> Self { IO(r, std::io::BufWriter::new(w)) } pub fn write<S: ToString>(&mut self, s: S) { use std::io::Write; self.1.write(s.to_string().as_bytes()).unwrap(); } pub fn read<T: std::str::FromStr>(&mut self) -> T { use std::io::Read; let s: String = self .0 .by_ref() .bytes() .map(|b| b.unwrap() as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect(); return s.parse::<T>().ok().unwrap(); } pub fn vec<T: std::str::FromStr>(&mut self, n: usize) -> Vec<T> { (0..n).map(|_| self.read()).collect() } pub fn chars(&mut self) -> Vec<char> { self.read::<String>().chars().collect() } } fn prime_factorization(n: i64) -> HashMap<i64, i64> { let mut n = n; let mut res = HashMap::new(); let mut i = 2; while i * i <= n { while n % i == 0 { n /= i; let count = res.entry(i).or_insert(0); *count += 1; } i += 1; } if n > 1 { res.insert(n, 1); } return res; } // // struct Combination { // MOD: i64, // fac: Vec<i64>, // fac_inv: Vec<i64>, // } // // impl Combination { // pub fn new(n: i64) -> Self { // let MOD: i64 = 1_000_000_007; // let mut fac: Vec<i64> = vec![0; n as usize + 1]; // let mut fac_inv: Vec<i64> = vec![0; n as usize + 1]; // // let get_inverse = |mut n: i64| -> i64 { // let (mut res, mut p) = (1, MOD - 2); // // while p != 0 { // if p & 1 == 1 { // res = (res * n) % MOD; // } // n = (n * n) % MOD; // p >>= 1; // } // // return res; // }; // // fac[0] = 1; // // for i in 1..n + 1 { // fac[i as usize] = (fac[i as usize - 1] * i) % MOD; // } // // for i in 0..n + 1 { // fac_inv[i as usize] = get_inverse(fac[i as usize]); // } // // Combination { // MOD: MOD, // fac: fac, // fac_inv: fac_inv, // } // } // // fn nCr(&self, n: i64, r: i64) -> i64 { // if n < r { // return 0; // } // // let a: i64 = self.fac[n as usize]; // let b: i64 = self.fac_inv[(n - r) as usize]; // let c: i64 = self.fac_inv[r as usize]; // let bc: i64 = (b * c) % self.MOD; // // return (a * bc) % self.MOD; // } // // fn nPr(&self, n: i64, r: i64) -> i64 { // if n < r { // return 0; // } // // let a: i64 = self.fac[n as usize]; // let b: i64 = self.fac_inv[(n - r) as usize]; // // return (a * b) % self.MOD; // } // // fn nHr(&self, n: i64, r: i64) -> i64 { // if n == 0 && r == 0 { // return 1; // } // // return self.nCr(n + r - 1, r); // } // } #[derive(Copy, Clone, Eq, PartialEq)] struct Edge { to: usize, cost: i64, } fn dijkstra(graph: &Vec<Vec<Edge>>, s: &usize) -> Vec<i64> { use std::collections::BinaryHeap; let mut dist = vec![1e18 as i64; graph.len()]; let mut heap = BinaryHeap::new(); dist[*s] = 0; heap.push(Rev((0, *s))); while let Some(Rev((cost, v))) = heap.pop() { if dist[v] < cost { continue; } for e in &graph[v] { if dist[e.to] <= dist[v] + e.cost { continue; } dist[e.to] = dist[v] + e.cost; heap.push(Rev((dist[e.to], e.to))); } } return dist; } struct LCA { par: Vec<Vec<Option<usize>>>, dist: Vec<i64>, } impl LCA { pub fn new(graph: &Vec<Vec<usize>>, root: usize) -> LCA { let V = graph.len(); let mut K = 1; while (1 << K) < V { K += 1; } let mut par = vec![vec![None; V]; K]; let mut dist = vec![-1; V]; let graph = graph.to_vec(); fn dfs( v: usize, p: Option<usize>, d: i64, graph: &Vec<Vec<usize>>, par: &mut Vec<Vec<Option<usize>>>, dist: &mut Vec<i64>, ) { par[0][v] = p; dist[v] = d; for &to in &graph[v] { match p { Some(p) => { if to != p { dfs(to, Some(v), d + 1, graph, par, dist) } } None => dfs(to, Some(v), d + 1, graph, par, dist), } } } dfs(root, None, 0, &graph, &mut par, &mut dist); for k in 0..K - 1 { for v in 0..V { match par[k][v] { Some(x) => par[k + 1][v] = par[k][x], None => (), } } } LCA { par: par, dist: dist, } } pub fn query(&self, u: usize, v: usize) -> usize { let mut u = u; let mut v = v; if self.dist[u] < self.dist[v] { return self.query(v, u); } let K = self.par.len(); for k in 0..K { if ((self.dist[u] - self.dist[v]) >> k & 1) == 1 { u = self.par[k][u].unwrap(); } } if u == v { return u; } for k in (0..K - 1).rev() { if self.par[k][u] != self.par[k][v] { u = self.par[k][u].unwrap(); v = self.par[k][v].unwrap(); } } return self.par[0][u].unwrap(); } } struct Doubling { N: usize, LOG: usize, next: Vec<Vec<Option<usize>>>, } impl Doubling { pub fn new(vec: &Vec<usize>, lim: &usize) -> Doubling { let N = vec.len(); let lim = *lim; let mut LOG = 1; while (1 << LOG) < 2 * lim { LOG += 1; } let mut next = vec![vec![None; N]; LOG]; for i in 0..N { next[0][i] = Some(vec[i]); } for k in 0..LOG - 1 { for i in 0..N { match next[k][i] { Some(x) => next[k + 1][i] = next[k][x], None => (), } } } Doubling { N: N, LOG: LOG, next: next, } } pub fn query(&self, i: usize, n: usize) -> usize { let mut i = i; for k in (0..self.LOG).rev() { if (n >> k) & 1 == 1 { i = self.next[k][i].unwrap(); } } return i; } } struct UnionFind { par: Vec<i32>, } impl UnionFind { pub fn new(n: usize) -> UnionFind { UnionFind { par: vec![-1; n] } } pub fn root(&mut self, x: usize) -> usize { if self.par[x] < 0 { return x; } else { let a = self.par[x] as usize; self.par[x] = self.root(a) as i32; return self.par[x] as usize; } } pub fn same(&mut self, x: usize, y: usize) -> bool { self.root(x) == self.root(y) } pub fn merge(&mut self, x: usize, y: usize) -> bool { let mut x = self.root(x); let mut y = self.root(y); if x == y { return false; } else { if self.par[x] > self.par[y] { std::mem::swap(&mut x, &mut y); } self.par[x] += self.par[y]; self.par[y] = x as i32; return true; } } pub fn size(&mut self, x: usize) -> i64 { let a = self.root(x); return -self.par[a] as i64; } } trait Monoid { fn id() -> Self; fn op(&self, rhs: &Self) -> Self; } #[derive(Clone, Debug)] struct Min(i64); #[derive(Clone, Debug)] struct RangeUpdate(i64); #[derive(Clone, Debug)] struct RangeAdd(i64); #[derive(Clone, Debug)] struct Sum(i64); impl Monoid for Sum { fn id() -> Self { Sum(0) } fn op(&self, rhs: &Self) -> Self { Sum(self.0 + rhs.0) } } impl Monoid for Min { fn id() -> Self { Min(std::i32::MAX as i64) } fn op(&self, rhs: &Self) -> Self { Min(std::cmp::min(self.0, (*rhs).0)) } } trait Operator { type T; fn id() -> Self; fn op(&self, rhs: &Self) -> Self; fn act(&self, tar: &Self::T, x: usize) -> Self::T; } impl Operator for RangeUpdate { type T = Min; fn id() -> Self { RangeUpdate(0) } fn op(&self, rhs: &Self) -> Self { (*rhs).clone() } fn act(&self, tar: &Self::T, x: usize) -> Self::T { Min(self.0) } } impl Operator for RangeAdd { type T = Sum; fn id() -> Self { RangeAdd(0) } fn op(&self, rhs: &Self) -> Self { RangeAdd(self.0 + rhs.0) } // Sum(tar.0 + self.0 * x as i64) fn act(&self, tar: &Self::T, x: usize) -> Self::T { Sum(tar.0 + self.0 * x as i64) } } struct LazySegTree<M: Monoid, O: Operator<T = M>> { dat: Vec<M>, lzy: Vec<O>, need_update: Vec<bool>, size: usize, } impl<M: Monoid + Clone, O: Operator<T = M> + Clone> LazySegTree<M, O> { pub fn new(vec: Vec<M>) -> LazySegTree<M, O> { let n = vec.len(); let mut sz = 1; while sz < n { sz <<= 1; } let mut dat = vec![M::id(); sz << 1]; for i in 0..n { dat[i + sz] = vec[i].clone(); } for k in (1..sz).rev() { dat[k] = dat[k << 1].op(&dat[(k << 1) + 1]); } return LazySegTree { dat: dat, lzy: vec![O::id(); sz << 1], need_update: vec![false; sz << 1], size: sz, }; } pub fn eval(&mut self, l: usize, r: usize, k: usize) { if !self.need_update[k] { return; } self.dat[k] = self.lzy[k].act(&self.dat[k], r - l); if (k << 1) < self.dat.len() { self.lzy[k << 1] = self.lzy[k << 1].op(&self.lzy[k]); self.lzy[(k << 1) + 1] = self.lzy[(k << 1) + 1].op(&self.lzy[k]); self.need_update[k << 1] = true; self.need_update[(k << 1) + 1] = true; } self.lzy[k] = O::id(); self.need_update[k] = false; } pub fn update(&mut self, a: usize, b: usize, x: O) { let sz = self.size; self._update(a, b, &x, 0, sz, 1); } pub fn _update(&mut self, a: usize, b: usize, x: &O, l: usize, r: usize, k: usize) { self.eval(l, r, k); if b <= l || r <= a { return; } else if a <= l && r <= b { self.lzy[k] = self.lzy[k].op(x); self.need_update[k] = true; self.eval(l, r, k); } else { let mid = (l + r) >> 1; self._update(a, b, x, l, mid, k << 1); self._update(a, b, x, mid, r, (k << 1) + 1); self.dat[k] = self.dat[k << 1].op(&self.dat[(k << 1) + 1]); } } pub fn query(&mut self, a: usize, b: usize) -> M { let sz = self.size; return self._query(a, b, 0, sz, 1); } pub fn _query(&mut self, a: usize, b: usize, l: usize, r: usize, k: usize) -> M { self.eval(l, r, k); if b <= l || r <= a { return M::id(); } else if a <= l && r <= b { return self.dat[k].clone(); } else { let mid = (l + r) >> 1; let vl = self._query(a, b, l, mid, k << 1); let vr = self._query(a, b, mid, r, (k << 1) + 1); return vl.op(&vr); } } } struct SegTree<M: Monoid> { dat: Vec<M>, size: usize, } impl<M: Monoid + Clone> SegTree<M> { pub fn new(n: usize) -> SegTree<M> { let mut sz = 1; while sz < n { sz <<= 1; } SegTree::<M> { dat: vec![M::id(); sz * 2], size: sz, } } pub fn update(&mut self, k: usize, val: M) { let mut k = k + self.size; self.dat[k] = val; while k > 0 { k = k >> 1; self.dat[k] = self.dat[k << 1].op(&self.dat[(k << 1) + 1]); } } pub fn query(&self, a: usize, b: usize) -> M { let mut lx = M::id(); let mut rx = M::id(); let mut l = a + self.size; let mut r = b + self.size; while l < r { if (l & 1) == 1 { lx = lx.op(&self.dat[l]); l += 1; } if (r & 1) == 1 { r -= 1; rx = self.dat[r].op(&rx); } l >>= 1; r >>= 1; } return lx.op(&rx); } } fn decode(v: Vec<char>) -> Vec<(char, usize)> { let mut res = Vec::new(); let mut now = v[0]; let mut cnt = 1; for i in 1..v.len() { if v[i] == now { cnt += 1; } else { res.push((now, cnt)); cnt = 1; now = v[i]; } } res.push((now, cnt)); return res; } // pub mod mod_int { use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign}; type Num = usize; #[derive(Clone, Copy)] pub struct ModInt<T: Copy + Clone>(pub T); impl Add<ModInt<Num>> for ModInt<Num> { type Output = ModInt<Num>; fn add(self, rhs: ModInt<Num>) -> ModInt<Num> { self + rhs.0 } } impl Add<Num> for ModInt<Num> { type Output = ModInt<Num>; fn add(self, mut rhs: Num) -> ModInt<Num> { if rhs >= MOD { rhs %= MOD; } let mut t = rhs + self.0; if t >= MOD { t = t - MOD; } ModInt(t) } } impl Sub<Num> for ModInt<Num> { type Output = ModInt<Num>; fn sub(self, rhs: Num) -> ModInt<Num> { let rhs = if rhs >= MOD { rhs % MOD } else { rhs }; let value = if self.0 < rhs { self.0 + MOD } else { self.0 }; ModInt(value - rhs) } } impl Sub<ModInt<Num>> for ModInt<Num> { type Output = ModInt<Num>; fn sub(self, rhs: ModInt<Num>) -> ModInt<Num> { self - rhs.0 } } impl AddAssign<Num> for ModInt<Num> { fn add_assign(&mut self, other: Num) { *self = *self + other; } } impl AddAssign<ModInt<Num>> for ModInt<Num> { fn add_assign(&mut self, other: ModInt<Num>) { *self = *self + other; } } impl SubAssign<Num> for ModInt<Num> { fn sub_assign(&mut self, other: Num) { *self = *self - other; } } impl SubAssign<ModInt<Num>> for ModInt<Num> { fn sub_assign(&mut self, other: ModInt<Num>) { *self = *self - other; } } impl Div<Num> for ModInt<Num> { type Output = ModInt<Num>; fn div(self, mut rhs: Num) -> ModInt<Num> { if rhs >= MOD { rhs %= MOD; } self * ModInt(rhs).pow(MOD - 2) } } impl Div<ModInt<Num>> for ModInt<Num> { type Output = ModInt<Num>; fn div(self, rhs: ModInt<Num>) -> ModInt<Num> { self / rhs.0 } } impl DivAssign<Num> for ModInt<Num> { fn div_assign(&mut self, rhs: Num) { *self = *self / rhs } } impl DivAssign<ModInt<Num>> for ModInt<Num> { fn div_assign(&mut self, rhs: ModInt<Num>) { *self = *self / rhs } } impl Mul<ModInt<Num>> for ModInt<Num> { type Output = ModInt<Num>; fn mul(self, rhs: ModInt<Num>) -> ModInt<Num> { self * rhs.0 } } impl Mul<Num> for ModInt<Num> { type Output = ModInt<Num>; fn mul(self, mut rhs: Num) -> ModInt<Num> { if rhs >= MOD { rhs %= MOD; } let t = (self.0 * rhs) % MOD; ModInt(t) } } impl MulAssign<Num> for ModInt<Num> { fn mul_assign(&mut self, rhs: Num) { *self = *self * rhs; } } impl MulAssign<ModInt<Num>> for ModInt<Num> { fn mul_assign(&mut self, rhs: ModInt<Num>) { *self = *self * rhs; } } impl ModInt<Num> { pub fn pow(self, e: Num) -> ModInt<Num> { let mut result = ModInt(1); let mut cur = self; let mut e = e; while e > 0 { if e & 1 == 1 { result *= cur; } e >>= 1; cur *= cur; } result } } impl Zero for ModInt<Num> { fn zero() -> Self { ModInt(0) } } // } const MOD: usize = 1e9 as usize + 7; struct Eratosthenes { n: usize, prime: Vec<bool>, } impl Eratosthenes { pub fn new(n: usize) -> Eratosthenes { let mut prime = vec![true; n + 1]; prime[0] = false; prime[1] = false; let mut i = 2; while i * i <= n { if prime[i] { let mut p = i * 2; while p <= n { prime[p] = false; p += i; } } i += 1; } Eratosthenes { n: n, prime: prime } } } trait Zero { fn zero() -> Self; } impl Zero for usize { fn zero() -> Self { 0usize } } struct MatrixDP<T: Add + Mul + Clone + Copy + Zero> { mat: Vec<Vec<T>>, dp: Vec<T>, } impl<T: Add<Output = T> + Mul<Output = T> + Clone + Copy + Zero> MatrixDP<T> { pub fn new(mat: Vec<Vec<T>>, dp: Vec<T>) -> MatrixDP<T> { MatrixDP { mat: mat, dp: dp } } pub fn mat_mul(&mut self) -> Vec<T> { let m = self.dp.len(); let mut res = vec![T::zero(); m]; for i in 0..m { for j in 0..m { res[i] = res[i] + self.mat[i][j] * self.dp[j]; } } return res; } pub fn update(&mut self) -> Vec<Vec<T>> { let m = self.mat.len(); let mut res = vec![vec![T::zero(); m]; m]; for i in 0..m { for j in 0..m { for k in 0..m { res[i][j] = res[i][j] + self.mat[i][k] * self.mat[k][j]; } } } return res; } pub fn mat_pow(&mut self, k: usize) { let mut k = k; let m = self.dp.len(); while k > 0 { if k & 1 == 1 { self.dp = self.mat_mul(); } self.mat = self.update(); k >>= 1 } } } fn solve() { input! { n: usize } let mut mat = vec![vec![ModInt(0); 6]; 6]; let mut dp = vec![ModInt(0); 6]; dp[0] = ModInt(1); for i in 0..6 { mat[0][i] = ModInt(1) / ModInt(6); } for i in 1..6 { mat[i][i - 1] = ModInt(1); } let mut matdp = MatrixDP::new(mat, dp); matdp.mat_pow(n); println!("{}", matdp.dp[0].0); } fn main() { solve(); }