結果

問題 No.1084 積の積
ユーザー LayCurseLayCurse
提出日時 2020-06-19 21:44:27
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 7,467 bytes
コンパイル時間 2,736 ms
コンパイル使用メモリ 214,604 KB
実行使用メモリ 7,620 KB
最終ジャッジ日時 2024-07-03 14:12:06
合計ジャッジ時間 3,560 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 19 ms
5,888 KB
testcase_05 WA -
testcase_06 AC 19 ms
6,016 KB
testcase_07 WA -
testcase_08 AC 2 ms
5,376 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 4 ms
5,376 KB
testcase_13 AC 7 ms
6,400 KB
testcase_14 AC 4 ms
5,376 KB
testcase_15 AC 4 ms
5,376 KB
testcase_16 AC 7 ms
6,784 KB
testcase_17 AC 3 ms
5,376 KB
testcase_18 AC 5 ms
5,760 KB
testcase_19 AC 7 ms
6,400 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 4 ms
5,376 KB
testcase_22 AC 3 ms
5,376 KB
testcase_23 AC 5 ms
5,376 KB
testcase_24 AC 4 ms
5,376 KB
testcase_25 AC 6 ms
6,400 KB
testcase_26 AC 6 ms
6,144 KB
testcase_27 AC 7 ms
6,144 KB
testcase_28 AC 7 ms
6,272 KB
testcase_29 AC 7 ms
6,272 KB
testcase_30 AC 7 ms
6,272 KB
testcase_31 AC 6 ms
6,272 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
struct Modint{
  unsigned val;
  Modint(){
    val=0;
  }
  Modint(int a){
    val = ord(a);
  }
  Modint(unsigned a){
    val = ord(a);
  }
  Modint(long long a){
    val = ord(a);
  }
  Modint(unsigned long long a){
    val = ord(a);
  }
  inline unsigned ord(unsigned a){
    return a%MD;
  }
  inline unsigned ord(int a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned ord(unsigned long long a){
    return a%MD;
  }
  inline unsigned ord(long long a){
    a %= (int)MD;
    if(a < 0){
      a += MD;
    }
    return a;
  }
  inline unsigned get(){
    return val;
  }
  inline Modint &operator+=(Modint a){
    val += a.val;
    if(val >= MD){
      val -= MD;
    }
    return *this;
  }
  inline Modint &operator-=(Modint a){
    if(val < a.val){
      val = val + MD - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  inline Modint &operator*=(Modint a){
    val = ((unsigned long long)val*a.val)%MD;
    return *this;
  }
  inline Modint &operator/=(Modint a){
    return *this *= a.inverse();
  }
  inline Modint operator+(Modint a){
    return Modint(*this)+=a;
  }
  inline Modint operator-(Modint a){
    return Modint(*this)-=a;
  }
  inline Modint operator*(Modint a){
    return Modint(*this)*=a;
  }
  inline Modint operator/(Modint a){
    return Modint(*this)/=a;
  }
  inline Modint operator+(int a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(int a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(int a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(int a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator+(long long a){
    return Modint(*this)+=Modint(a);
  }
  inline Modint operator-(long long a){
    return Modint(*this)-=Modint(a);
  }
  inline Modint operator*(long long a){
    return Modint(*this)*=Modint(a);
  }
  inline Modint operator/(long long a){
    return Modint(*this)/=Modint(a);
  }
  inline Modint operator-(void){
    Modint res;
    if(val){
      res.val=MD-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  inline operator bool(void){
    return val!=0;
  }
  inline operator int(void){
    return get();
  }
  inline operator long long(void){
    return get();
  }
  inline Modint inverse(){
    int a = val;
    int b = MD;
    int u = 1;
    int v = 0;
    int t;
    Modint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += MD;
    }
    res.val = u;
    return res;
  }
  inline Modint pw(unsigned long long b){
    Modint a(*this);
    Modint res;
    res.val = 1;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  inline bool operator==(int a){
    return ord(a)==val;
  }
  inline bool operator!=(int a){
    return ord(a)!=val;
  }
}
;
inline Modint operator+(int a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
  return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
  return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
  return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
  return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
  return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
  static char buf[1048576];
  static int s = 1048576;
  static int e = 1048576;
  if(s == e && e == 1048576){
    e = fread_unlocked(buf, 1, 1048576, stdin);
    s = 0;
  }
  if(s == e){
    return EOF;
  }
  return buf[s++];
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
inline void rd(long long &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = my_getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = my_getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
struct MY_WRITER{
  char buf[1048576];
  int s;
  int e;
  MY_WRITER(){
    s = 0;
    e = 1048576;
  }
  ~MY_WRITER(){
    if(s){
      fwrite_unlocked(buf, 1, s, stdout);
    }
  }
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
  if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
    fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
    MY_WRITER_VAR.s = 0;
  }
  MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
  my_putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    my_putchar_unlocked('-');
  }
  while(s--){
    my_putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(Modint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T, class S> inline T pow_L(T a, S b){
  T res = 1;
  res = 1;
  for(;;){
    if(b&1){
      res *= a;
    }
    b >>= 1;
    if(b==0){
      break;
    }
    a *= a;
  }
  return res;
}
inline double pow_L(double a, double b){
  return pow(a,b);
}
int N;
long long A[100000];
long long sm[100000+1];
long long dm[100000+1];
Modint solve(int N, long long A[]){
  int i;
  int j;
  long long m = 1;
  long long t;
  Modint res = 1;
  if(N==0){
    return res;
  }
  for(i=(0);i<(N+1);i++){
    sm[i] = 0;
  }
  j = 0;
  for(i=(0);i<(N);i++){
    while(j < N && m * A[j] < 1000000000){
      m *= A[j++];
    }
    if(j){
      dm[j-1]++;
    }
    if(i){
      dm[i-1]--;
    }
    if(i){
      sm[i-1] -= j-i;
    }
    m /= A[i];
  }
  for(i=(N)-1;i>=(0);i--){
    sm[i] += sm[i+1];
  }
  t = m = 0;
  for(i=(N)-1;i>=(0);i--){
    m += dm[i];
    t += m;
    sm[i] += t;
  }
  for(i=(0);i<(N);i++){
    res *=(pow_L(Modint(A[i]),sm[i]));
  }
  return res;
}
int main(){
  int i;
  int j;
  long long m = 1;
  Modint res = 1;
  rd(N);
  {
    int tU__gIr_;
    for(tU__gIr_=(0);tU__gIr_<(N);tU__gIr_++){
      rd(A[tU__gIr_]);
    }
  }
  j = 0;
  for(i=(0);i<(N+1);i++){
    if(i==N || A[i]==0){
      res *= solve(i-j, A+j);
      j = i+1;
    }
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay varsion 20200509-1

// --- original code ---
// int N;
// ll A[1d5];
// ll sm[1d5+1], dm[1d5+1];
// 
// Modint solve(int N, ll A[]){
//   int i, j;
//   ll m = 1, t;
//   Modint res = 1;
// 
//   if(N==0) return res;
//   rep(i,N+1) sm[i] = 0;
// 
//   j = 0;
//   rep(i,N){
//     while(j < N && m * A[j] < 1d9) m *= A[j++];
//     if(j) dm[j-1]++;
//     if(i) dm[i-1]--;
//     if(i) sm[i-1] -= j-i;
//     m /= A[i];
//   }
// 
//   rrep(i,N) sm[i] += sm[i+1];
// 
//   t = m = 0;
//   rrep(i,N){
//     m += dm[i];
//     t += m;
//     sm[i] += t;
//   }
//   rep(i,N) res *= Modint(A[i]) ** sm[i];
//   return res;
// }
// 
// {
//   int i, j;
//   ll m = 1;
//   Modint res = 1;
// 
//   rd(N,A(N));
//   j = 0;
//   rep(i,N+1) if(i==N || A[i]==0){
//     res *= solve(i-j, A+j);
//     j = i+1;
//   }
// 
//   wt(res);
// }
0