結果

問題 No.1084 積の積
ユーザー くれちー
提出日時 2020-06-19 23:40:27
言語 Rust
(1.83.0 + proconio)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 17,462 bytes
コンパイル時間 13,756 ms
コンパイル使用メモリ 400,412 KB
最終ジャッジ日時 2024-11-14 22:39:09
合計ジャッジ時間 14,702 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
error[E0433]: failed to resolve: use of undeclared crate or module `lib`
   --> src/main.rs:284:11
    |
284 |       use lib::algebra::structures::Monoid;
    |           ^^^ use of undeclared crate or module `lib`

For more information about this error, try `rustc --explain E0433`.
error: could not compile `main` (bin "main") due to 1 previous error

ソースコード

diff #
プレゼンテーションモードにする

// The main code is at the very bottom.
#[allow(unused_imports)]
use {
lib::byte::ByteChar,
std::cell::{Cell, RefCell},
std::cmp::{
self,
Ordering::{self, *},
Reverse,
},
std::collections::*,
std::convert::identity,
std::fmt::{self, Debug, Display, Formatter},
std::io::prelude::*,
std::iter::{self, FromIterator},
std::marker::PhantomData,
std::mem,
std::num::Wrapping,
std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
std::process,
std::rc::Rc,
std::thread,
std::time::{Duration, Instant},
std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};
#[allow(unused_imports)]
#[macro_use]
pub mod lib {
pub mod algebra {
pub mod structures {
pub use self::associative_magma::*;
pub use self::magma::*;
pub use self::monoid::*;
pub use self::semigroup::*;
pub use self::unital_magma::*;
mod associative_magma {
use super::Magma;
pub trait AssociativeMagma: Magma {}
impl AssociativeMagma for () {}
impl<T> AssociativeMagma for Option<T> where T: AssociativeMagma {}
}
mod magma {
pub trait Magma: Clone {
fn op(&self, rhs: &Self) -> Self;
fn op_assign_right(&mut self, rhs: &Self) {
*self = self.op(rhs);
}
fn op_assign_left(&mut self, lhs: &Self) {
*self = lhs.op(self);
}
}
impl Magma for () {
#[allow(clippy::unused_unit)]
fn op(&self, _rhs: &Self) -> Self {
()
}
}
impl<T> Magma for Option<T>
where
T: Magma,
{
fn op(&self, rhs: &Self) -> Self {
match (self, rhs) {
(Some(lhs), Some(rhs)) => Some(lhs.op(rhs)),
(Some(x), None) | (None, Some(x)) => Some(x.clone()),
(None, None) => None,
}
}
}
}
mod monoid {
use super::{AssociativeMagma, UnitalMagma};
pub trait Monoid: AssociativeMagma + UnitalMagma {}
impl<T: AssociativeMagma + UnitalMagma> Monoid for T {}
}
mod semigroup {
use super::AssociativeMagma;
pub trait Semigroup: AssociativeMagma {}
impl<T: AssociativeMagma> Semigroup for T {}
}
mod unital_magma {
use super::Magma;
pub trait UnitalMagma: Magma {
fn identity() -> Self;
}
impl UnitalMagma for () {
#[allow(clippy::unused_unit)]
fn identity() -> Self {
()
}
}
impl<T> UnitalMagma for Option<T>
where
T: Magma,
{
fn identity() -> Self {
None
}
}
}
}
}
pub mod byte {
pub use self::byte_char::*;
mod byte_char {
use std::error::Error;
use std::fmt::{self, Debug, Display, Formatter};
use std::str::FromStr;
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct ByteChar(pub u8);
impl Debug for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "b'{}'", self.0 as char)
}
}
impl Display for ByteChar {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}", self.0 as char)
}
}
impl FromStr for ByteChar {
type Err = ParseByteCharError;
fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
match s.as_bytes().len() {
1 => Ok(ByteChar(s.as_bytes()[0])),
0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
_ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub struct ParseByteCharError {
kind: ParseByteCharErrorKind,
}
impl Display for ParseByteCharError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
f.write_str(match self.kind {
ParseByteCharErrorKind::EmptyStr => "empty string",
ParseByteCharErrorKind::TooManyBytes => "too many bytes",
})
}
}
impl Error for ParseByteCharError {}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
enum ParseByteCharErrorKind {
EmptyStr,
TooManyBytes,
}
impl From<ParseByteCharErrorKind> for ParseByteCharError {
fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
ParseByteCharError { kind }
}
}
}
}
pub mod io {
pub use self::scanner::*;
mod scanner {
use std::io::{self, BufRead};
use std::iter;
use std::str::FromStr;
#[derive(Debug)]
pub struct Scanner<R> {
reader: R,
buf: String,
pos: usize,
}
impl<R: BufRead> Scanner<R> {
pub fn new(reader: R) -> Self {
Scanner {
reader: reader,
buf: String::new(),
pos: 0,
}
}
pub fn next(&mut self) -> io::Result<&str> {
let start = loop {
match self.rest().find(|c| c != ' ') {
Some(i) => break i,
None => self.fill_buf()?,
}
};
self.pos += start;
let len = self.rest().find(' ').unwrap_or(self.rest().len());
let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
self.pos += len;
Ok(s)
}
pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
where
T: FromStr,
{
Ok(self.next()?.parse())
}
pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
where
T: FromStr,
{
iter::repeat_with(|| self.parse_next()).take(n).collect()
}
pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
where
F: FnMut(u8) -> T,
{
Ok(self.next()?.bytes().map(&mut f).collect())
}
pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
where
F: FnMut(u8) -> T,
{
iter::repeat_with(|| self.map_next_bytes(&mut f))
.take(n)
.collect()
}
fn rest(&self) -> &str {
&self.buf[self.pos..]
}
fn fill_buf(&mut self) -> io::Result<()> {
self.buf.clear();
self.pos = 0;
let read = self.reader.read_line(&mut self.buf)?;
if read == 0 {
return Err(io::ErrorKind::UnexpectedEof.into());
}
if *self.buf.as_bytes().last().unwrap() == b'\n' {
self.buf.pop();
}
Ok(())
}
}
}
}
pub mod sequences {
pub use self::segment_tree::SegmentTree;
pub mod segment_tree {
use super::*;
use lib::algebra::structures::Monoid;
use std::collections::VecDeque;
use std::iter::{self, FromIterator};
use std::mem;
use std::ops::{Deref, DerefMut, Range};
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct SegmentTree<T> {
vec: Vec<T>,
// virtual length, which is power of two
base_len: usize,
// avaliable length
len: usize,
}
impl<M: Monoid> FromIterator<M> for SegmentTree<M> {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = M>,
{
let iter = iter.into_iter();
let min_len = iter.size_hint().0;
let (min_base_len, min_vec_len) = Self::extend_len(min_len);
let mut deque = VecDeque::with_capacity(min_vec_len);
if min_base_len > 1 {
// inner nodes
deque.extend(iter::repeat(M::identity()).take(min_base_len - 1));
}
// leaf nodes
deque.extend(iter);
let len = deque.len() - min_base_len.saturating_sub(1);
let (base_len, _) = Self::extend_len(len);
if base_len > min_base_len {
for identity in iter::repeat(M::identity()).take(base_len - min_base_len) {
deque.push_front(identity);
}
// for buggy iterator
} else if min_base_len > base_len {
deque.drain(..min_base_len - base_len);
}
let mut tree = SegmentTree {
vec: deque.into(),
base_len,
len,
};
for node in (1..base_len).rev() {
tree.recalc(node);
}
tree
}
}
impl<M: Monoid> SegmentTree<M> {
pub fn new(len: usize) -> Self {
let (base_len, vec_len) = Self::extend_len(len);
let vec = if vec_len == 0 {
vec![]
} else {
vec![M::identity(); vec_len]
};
SegmentTree { vec, base_len, len }
}
pub fn len(&self) -> usize {
self.len
}
pub fn get(&self, index: usize) -> &M {
assert_index(index, self.len());
self.node(self.node_index(index))
}
pub fn get_mut(&mut self, index: usize) -> GetMut<M> {
assert_index(index, self.len());
GetMut {
node: self.node_index(index),
tree: self,
}
}
pub fn fold(&self, index: Range<usize>) -> M {
assert_index_range(&index, self.len());
let mut start = self.node_index(index.start);
let mut end = self.node_index(index.end);
let mut lacc = M::identity();
let mut racc = M::identity();
while start < end {
if start & 1 == 1 {
lacc.op_assign_right(self.node(start));
// [ 010 ] [ 011 ]
// [ 100 ] [ 101 ] [ 110 ] [ 111 ]
// * --> *
start += 1;
}
if end & 1 == 1 {
// [ 010 ] [ 011 ]
// [ 100 ] [ 101 ] [ 110 ] [ 111 ]
// * <-- *
end -= 1;
racc.op_assign_left(self.node(end));
}
// move to parents
start >>= 1;
end >>= 1;
}
lacc.op(&racc)
}
// (base_len, vec_len)
fn extend_len(len: usize) -> (usize, usize) {
if len == 0 {
(0, 0)
} else {
len
.checked_next_power_of_two()
.and_then(|base_len| {
(base_len - 1)
.checked_add(len)
.map(|vec_len| (base_len, vec_len))
})
.unwrap_or_else(|| panic!("length too large: {:?}", len))
}
}
fn node_index(&self, index: usize) -> usize {
self.base_len + index
}
fn recalc(&mut self, node: usize) {
let l = node << 1;
let r = (node << 1) | 1;
// inclusive
let last = self.vec.len();
debug_assert_eq!(last, self.node_index(self.len() - 1));
if l <= last {
*self.node_mut(node) = if r <= last {
self.node(l).op(&self.node(r))
} else {
self.node(l).clone()
};
}
}
fn rebuild(&mut self, mut node: usize) {
#[allow(clippy::while_immutable_condition)]
while {
node >>= 1;
node > 0
} {
self.recalc(node);
}
}
fn node(&self, node: usize) -> &M {
&self.vec[node - 1]
}
fn node_mut(&mut self, node: usize) -> &mut M {
&mut self.vec[node - 1]
}
}
pub struct GetMut<'a, M: 'a + Monoid> {
tree: &'a mut SegmentTree<M>,
node: usize,
}
impl<'a, M: Monoid> Drop for GetMut<'a, M> {
fn drop(&mut self) {
self.tree.rebuild(self.node);
}
}
impl<'a, M: Monoid> Deref for GetMut<'a, M> {
type Target = M;
fn deref(&self) -> &M {
self.tree.node(self.node)
}
}
impl<'a, M: Monoid> DerefMut for GetMut<'a, M> {
fn deref_mut(&mut self) -> &mut M {
self.tree.node_mut(self.node)
}
}
}
use std::ops::{Range, RangeTo};
macro_rules! assert_index {
($cond:expr, $index:expr, $len:expr) => {
assert!(
$cond,
"index out of bounds: the len is {:?} but the index is {:?}",
$len, $index
)
};
}
fn assert_index(index: usize, len: usize) {
assert_index!(index < len, index, len);
}
fn assert_index_range(index: &Range<usize>, len: usize) {
assert!(
index.start <= index.end,
"range start is greater than range end: {:?}",
index
);
assert_index!(index.end <= len, index, len);
}
}
}
#[allow(unused_macros)]
macro_rules! eprint {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::eprint!($($arg)*)
}
};
}
#[allow(unused_macros)]
macro_rules! eprintln {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::eprintln!($($arg)*)
}
};
}
#[allow(unused_macros)]
macro_rules! dbg {
($($arg:tt)*) => {
if cfg!(debug_assertions) {
std::dbg!($($arg)*)
} else {
($($arg)*)
}
};
}
const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(128);
const INTERACTIVE: bool = false;
fn main() -> std::io::Result<()> {
match CUSTOM_STACK_SIZE_MIB {
Some(stack_size_mib) => std::thread::Builder::new()
.name("run_solver".to_owned())
.stack_size(stack_size_mib * 1024 * 1024)
.spawn(run_solver)?
.join()
.unwrap(),
None => run_solver(),
}
}
fn run_solver() -> std::io::Result<()> {
let stdin = std::io::stdin();
let reader = stdin.lock();
let stdout = std::io::stdout();
let writer = stdout.lock();
macro_rules! with_wrapper {
($($wrapper:expr)?) => {{
let mut writer = $($wrapper)?(writer);
solve(reader, &mut writer)?;
writer.flush()
}};
}
if cfg!(debug_assertions) {
with_wrapper!()
} else if INTERACTIVE {
with_wrapper!(std::io::LineWriter::new)
} else {
with_wrapper!(std::io::BufWriter::new)
}
}
fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
R: BufRead,
W: Write,
{
let mut _scanner = lib::io::Scanner::new(reader);
#[allow(unused_macros)]
macro_rules! scan {
($T:ty) => {
_scanner.parse_next::<$T>()?.unwrap()
};
($($T:ty),+) => {
($(scan!($T)),+)
};
($T:ty; $n:expr) => {
_scanner.parse_next_n::<$T>($n)?.unwrap()
};
($($T:ty),+; $n:expr) => {
iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
.take($n)
.collect::<std::io::Result<Vec<_>>>()?
};
}
#[allow(unused_macros)]
macro_rules! scan_bytes_map {
($f:expr) => {
_scanner.map_next_bytes($f)?
};
($f:expr; $n:expr) => {
_scanner.map_next_bytes_n($n, $f)?
};
}
#[allow(unused_macros)]
macro_rules! print {
($($arg:tt)*) => {
write!(writer, $($arg)*)?
};
}
#[allow(unused_macros)]
macro_rules! println {
($($arg:tt)*) => {
writeln!(writer, $($arg)*)?
};
}
#[allow(unused_macros)]
macro_rules! answer {
($($arg:tt)*) => {{
println!($($arg)*);
return Ok(());
}};
}
{
const MOD: u64 = 1_000_000_007;
fn mod_pow(mut x: u64, mut n: u64) -> u64 {
let mut acc = 1;
while n > 0 {
if n % 2 == 1 {
acc *= x;
acc %= MOD;
}
x *= x;
x %= MOD;
n /= 2;
}
acc
}
let n = scan!(usize);
let a = scan!(u64; n);
if a.iter().any(|&a_i| a_i == 0) {
answer!("{}", 0);
}
use lib::algebra::structures::*;
use lib::sequences::SegmentTree;
#[derive(Clone, Copy, Debug)]
pub struct M(u64, Option<(u64, u64)>);
impl Magma for M {
fn op(&self, rhs: &Self) -> Self {
let rn = rhs.0;
let inner = match (self.1, rhs.1) {
(Some(lhs), Some(rhs)) => {
let p = lhs.1 * rhs.1;
if p < 1_000_000_000 {
Some((lhs.0 * mod_pow(lhs.1, rn) % MOD * rhs.0 % MOD, p))
} else {
None
}
}
_ => None,
};
M(self.0 + rhs.0, inner)
}
}
impl AssociativeMagma for M {}
impl UnitalMagma for M {
fn identity() -> Self {
M(0, Some((1, 1)))
}
}
let a_segtree = a
.iter()
.map(|&a_i| M(1, Some((a_i, a_i))))
.collect::<SegmentTree<_>>();
let mut ans = 1;
for l in 0..n {
let mut ok = l;
let mut ng = n;
let M(_, mut ok_t) = a_segtree.fold(l..ok + 1);
while ng - ok > 1 {
let mid = (ok + ng) / 2;
let M(_, t) = a_segtree.fold(l..mid + 1);
if t.is_some() {
ok_t = t;
ok = mid;
} else {
ng = mid;
}
}
if let Some(t) = ok_t {
ans *= t.0;
ans %= MOD;
}
}
println!("{}", ans);
}
#[allow(unreachable_code)]
Ok(())
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0