結果

問題 No.1084 積の積
ユーザー くれちーくれちー
提出日時 2020-06-19 23:40:27
言語 Rust
(1.77.0 + proconio)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 17,462 bytes
コンパイル時間 13,756 ms
コンパイル使用メモリ 400,412 KB
最終ジャッジ日時 2024-11-14 22:39:09
合計ジャッジ時間 14,702 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
error[E0433]: failed to resolve: use of undeclared crate or module `lib`
   --> src/main.rs:284:11
    |
284 |       use lib::algebra::structures::Monoid;
    |           ^^^ use of undeclared crate or module `lib`

For more information about this error, try `rustc --explain E0433`.
error: could not compile `main` (bin "main") due to 1 previous error

ソースコード

diff #

// The main code is at the very bottom.

#[allow(unused_imports)]
use {
  lib::byte::ByteChar,
  std::cell::{Cell, RefCell},
  std::cmp::{
    self,
    Ordering::{self, *},
    Reverse,
  },
  std::collections::*,
  std::convert::identity,
  std::fmt::{self, Debug, Display, Formatter},
  std::io::prelude::*,
  std::iter::{self, FromIterator},
  std::marker::PhantomData,
  std::mem,
  std::num::Wrapping,
  std::ops::{Range, RangeFrom, RangeInclusive, RangeTo, RangeToInclusive},
  std::process,
  std::rc::Rc,
  std::thread,
  std::time::{Duration, Instant},
  std::{char, f32, f64, i128, i16, i32, i64, i8, isize, str, u128, u16, u32, u64, u8, usize},
};

#[allow(unused_imports)]
#[macro_use]
pub mod lib {
  pub mod algebra {
    pub mod structures {
      pub use self::associative_magma::*;
      pub use self::magma::*;
      pub use self::monoid::*;
      pub use self::semigroup::*;
      pub use self::unital_magma::*;

      mod associative_magma {
        use super::Magma;

        pub trait AssociativeMagma: Magma {}

        impl AssociativeMagma for () {}

        impl<T> AssociativeMagma for Option<T> where T: AssociativeMagma {}
      }

      mod magma {
        pub trait Magma: Clone {
          fn op(&self, rhs: &Self) -> Self;

          fn op_assign_right(&mut self, rhs: &Self) {
            *self = self.op(rhs);
          }

          fn op_assign_left(&mut self, lhs: &Self) {
            *self = lhs.op(self);
          }
        }

        impl Magma for () {
          #[allow(clippy::unused_unit)]
          fn op(&self, _rhs: &Self) -> Self {
            ()
          }
        }

        impl<T> Magma for Option<T>
        where
          T: Magma,
        {
          fn op(&self, rhs: &Self) -> Self {
            match (self, rhs) {
              (Some(lhs), Some(rhs)) => Some(lhs.op(rhs)),
              (Some(x), None) | (None, Some(x)) => Some(x.clone()),
              (None, None) => None,
            }
          }
        }
      }

      mod monoid {
        use super::{AssociativeMagma, UnitalMagma};

        pub trait Monoid: AssociativeMagma + UnitalMagma {}

        impl<T: AssociativeMagma + UnitalMagma> Monoid for T {}
      }

      mod semigroup {
        use super::AssociativeMagma;

        pub trait Semigroup: AssociativeMagma {}

        impl<T: AssociativeMagma> Semigroup for T {}
      }

      mod unital_magma {
        use super::Magma;

        pub trait UnitalMagma: Magma {
          fn identity() -> Self;
        }

        impl UnitalMagma for () {
          #[allow(clippy::unused_unit)]
          fn identity() -> Self {
            ()
          }
        }

        impl<T> UnitalMagma for Option<T>
        where
          T: Magma,
        {
          fn identity() -> Self {
            None
          }
        }
      }
    }
  }

  pub mod byte {
    pub use self::byte_char::*;

    mod byte_char {
      use std::error::Error;
      use std::fmt::{self, Debug, Display, Formatter};
      use std::str::FromStr;

      #[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
      #[repr(transparent)]
      pub struct ByteChar(pub u8);

      impl Debug for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "b'{}'", self.0 as char)
        }
      }

      impl Display for ByteChar {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          write!(f, "{}", self.0 as char)
        }
      }

      impl FromStr for ByteChar {
        type Err = ParseByteCharError;

        fn from_str(s: &str) -> Result<ByteChar, ParseByteCharError> {
          match s.as_bytes().len() {
            1 => Ok(ByteChar(s.as_bytes()[0])),
            0 => Err(ParseByteCharErrorKind::EmptyStr.into()),
            _ => Err(ParseByteCharErrorKind::TooManyBytes.into()),
          }
        }
      }

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      pub struct ParseByteCharError {
        kind: ParseByteCharErrorKind,
      }

      impl Display for ParseByteCharError {
        fn fmt(&self, f: &mut Formatter) -> fmt::Result {
          f.write_str(match self.kind {
            ParseByteCharErrorKind::EmptyStr => "empty string",
            ParseByteCharErrorKind::TooManyBytes => "too many bytes",
          })
        }
      }

      impl Error for ParseByteCharError {}

      #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
      enum ParseByteCharErrorKind {
        EmptyStr,
        TooManyBytes,
      }

      impl From<ParseByteCharErrorKind> for ParseByteCharError {
        fn from(kind: ParseByteCharErrorKind) -> ParseByteCharError {
          ParseByteCharError { kind }
        }
      }
    }
  }

  pub mod io {
    pub use self::scanner::*;

    mod scanner {
      use std::io::{self, BufRead};
      use std::iter;
      use std::str::FromStr;

      #[derive(Debug)]
      pub struct Scanner<R> {
        reader: R,
        buf: String,
        pos: usize,
      }

      impl<R: BufRead> Scanner<R> {
        pub fn new(reader: R) -> Self {
          Scanner {
            reader: reader,
            buf: String::new(),
            pos: 0,
          }
        }

        pub fn next(&mut self) -> io::Result<&str> {
          let start = loop {
            match self.rest().find(|c| c != ' ') {
              Some(i) => break i,
              None => self.fill_buf()?,
            }
          };
          self.pos += start;
          let len = self.rest().find(' ').unwrap_or(self.rest().len());
          let s = &self.buf[self.pos..][..len]; // self.rest()[..len]
          self.pos += len;
          Ok(s)
        }

        pub fn parse_next<T>(&mut self) -> io::Result<Result<T, T::Err>>
        where
          T: FromStr,
        {
          Ok(self.next()?.parse())
        }

        pub fn parse_next_n<T>(&mut self, n: usize) -> io::Result<Result<Vec<T>, T::Err>>
        where
          T: FromStr,
        {
          iter::repeat_with(|| self.parse_next()).take(n).collect()
        }

        pub fn map_next_bytes<T, F>(&mut self, mut f: F) -> io::Result<Vec<T>>
        where
          F: FnMut(u8) -> T,
        {
          Ok(self.next()?.bytes().map(&mut f).collect())
        }

        pub fn map_next_bytes_n<T, F>(&mut self, n: usize, mut f: F) -> io::Result<Vec<Vec<T>>>
        where
          F: FnMut(u8) -> T,
        {
          iter::repeat_with(|| self.map_next_bytes(&mut f))
            .take(n)
            .collect()
        }

        fn rest(&self) -> &str {
          &self.buf[self.pos..]
        }

        fn fill_buf(&mut self) -> io::Result<()> {
          self.buf.clear();
          self.pos = 0;
          let read = self.reader.read_line(&mut self.buf)?;
          if read == 0 {
            return Err(io::ErrorKind::UnexpectedEof.into());
          }
          if *self.buf.as_bytes().last().unwrap() == b'\n' {
            self.buf.pop();
          }
          Ok(())
        }
      }
    }
  }

  pub mod sequences {
    pub use self::segment_tree::SegmentTree;

    pub mod segment_tree {
      use super::*;
      use lib::algebra::structures::Monoid;

      use std::collections::VecDeque;
      use std::iter::{self, FromIterator};
      use std::mem;
      use std::ops::{Deref, DerefMut, Range};

      #[derive(Clone, PartialEq, Eq, Debug, Hash)]
      pub struct SegmentTree<T> {
        vec: Vec<T>,

        // virtual length, which is power of two
        base_len: usize,
        // avaliable length
        len: usize,
      }

      impl<M: Monoid> FromIterator<M> for SegmentTree<M> {
        fn from_iter<I>(iter: I) -> Self
        where
          I: IntoIterator<Item = M>,
        {
          let iter = iter.into_iter();

          let min_len = iter.size_hint().0;
          let (min_base_len, min_vec_len) = Self::extend_len(min_len);

          let mut deque = VecDeque::with_capacity(min_vec_len);

          if min_base_len > 1 {
            // inner nodes
            deque.extend(iter::repeat(M::identity()).take(min_base_len - 1));
          }

          // leaf nodes
          deque.extend(iter);

          let len = deque.len() - min_base_len.saturating_sub(1);
          let (base_len, _) = Self::extend_len(len);

          if base_len > min_base_len {
            for identity in iter::repeat(M::identity()).take(base_len - min_base_len) {
              deque.push_front(identity);
            }
          // for buggy iterator
          } else if min_base_len > base_len {
            deque.drain(..min_base_len - base_len);
          }

          let mut tree = SegmentTree {
            vec: deque.into(),
            base_len,
            len,
          };

          for node in (1..base_len).rev() {
            tree.recalc(node);
          }

          tree
        }
      }

      impl<M: Monoid> SegmentTree<M> {
        pub fn new(len: usize) -> Self {
          let (base_len, vec_len) = Self::extend_len(len);

          let vec = if vec_len == 0 {
            vec![]
          } else {
            vec![M::identity(); vec_len]
          };

          SegmentTree { vec, base_len, len }
        }

        pub fn len(&self) -> usize {
          self.len
        }

        pub fn get(&self, index: usize) -> &M {
          assert_index(index, self.len());

          self.node(self.node_index(index))
        }

        pub fn get_mut(&mut self, index: usize) -> GetMut<M> {
          assert_index(index, self.len());

          GetMut {
            node: self.node_index(index),
            tree: self,
          }
        }

        pub fn fold(&self, index: Range<usize>) -> M {
          assert_index_range(&index, self.len());

          let mut start = self.node_index(index.start);
          let mut end = self.node_index(index.end);

          let mut lacc = M::identity();
          let mut racc = M::identity();

          while start < end {
            if start & 1 == 1 {
              lacc.op_assign_right(self.node(start));

              // [     010     ] [     011     ]
              // [ 100 ] [ 101 ] [ 110 ] [ 111 ]
              //            *  -->  *
              start += 1;
            }

            if end & 1 == 1 {
              // [     010     ] [     011     ]
              // [ 100 ] [ 101 ] [ 110 ] [ 111 ]
              //                    *  <--  *
              end -= 1;

              racc.op_assign_left(self.node(end));
            }

            // move to parents
            start >>= 1;
            end >>= 1;
          }

          lacc.op(&racc)
        }

        // (base_len, vec_len)
        fn extend_len(len: usize) -> (usize, usize) {
          if len == 0 {
            (0, 0)
          } else {
            len
              .checked_next_power_of_two()
              .and_then(|base_len| {
                (base_len - 1)
                  .checked_add(len)
                  .map(|vec_len| (base_len, vec_len))
              })
              .unwrap_or_else(|| panic!("length too large: {:?}", len))
          }
        }

        fn node_index(&self, index: usize) -> usize {
          self.base_len + index
        }

        fn recalc(&mut self, node: usize) {
          let l = node << 1;
          let r = (node << 1) | 1;

          // inclusive
          let last = self.vec.len();
          debug_assert_eq!(last, self.node_index(self.len() - 1));

          if l <= last {
            *self.node_mut(node) = if r <= last {
              self.node(l).op(&self.node(r))
            } else {
              self.node(l).clone()
            };
          }
        }

        fn rebuild(&mut self, mut node: usize) {
          #[allow(clippy::while_immutable_condition)]
          while {
            node >>= 1;
            node > 0
          } {
            self.recalc(node);
          }
        }

        fn node(&self, node: usize) -> &M {
          &self.vec[node - 1]
        }

        fn node_mut(&mut self, node: usize) -> &mut M {
          &mut self.vec[node - 1]
        }
      }

      pub struct GetMut<'a, M: 'a + Monoid> {
        tree: &'a mut SegmentTree<M>,
        node: usize,
      }

      impl<'a, M: Monoid> Drop for GetMut<'a, M> {
        fn drop(&mut self) {
          self.tree.rebuild(self.node);
        }
      }

      impl<'a, M: Monoid> Deref for GetMut<'a, M> {
        type Target = M;

        fn deref(&self) -> &M {
          self.tree.node(self.node)
        }
      }

      impl<'a, M: Monoid> DerefMut for GetMut<'a, M> {
        fn deref_mut(&mut self) -> &mut M {
          self.tree.node_mut(self.node)
        }
      }
    }

    use std::ops::{Range, RangeTo};

    macro_rules! assert_index {
      ($cond:expr, $index:expr, $len:expr) => {
        assert!(
          $cond,
          "index out of bounds: the len is {:?} but the index is {:?}",
          $len, $index
        )
      };
    }

    fn assert_index(index: usize, len: usize) {
      assert_index!(index < len, index, len);
    }

    fn assert_index_range(index: &Range<usize>, len: usize) {
      assert!(
        index.start <= index.end,
        "range start is greater than range end: {:?}",
        index
      );
      assert_index!(index.end <= len, index, len);
    }
  }
}

#[allow(unused_macros)]
macro_rules! eprint {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprint!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! eprintln {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::eprintln!($($arg)*)
    }
  };
}
#[allow(unused_macros)]
macro_rules! dbg {
  ($($arg:tt)*) => {
    if cfg!(debug_assertions) {
      std::dbg!($($arg)*)
    } else {
      ($($arg)*)
    }
  };
}

const CUSTOM_STACK_SIZE_MIB: Option<usize> = Some(128);
const INTERACTIVE: bool = false;

fn main() -> std::io::Result<()> {
  match CUSTOM_STACK_SIZE_MIB {
    Some(stack_size_mib) => std::thread::Builder::new()
      .name("run_solver".to_owned())
      .stack_size(stack_size_mib * 1024 * 1024)
      .spawn(run_solver)?
      .join()
      .unwrap(),
    None => run_solver(),
  }
}

fn run_solver() -> std::io::Result<()> {
  let stdin = std::io::stdin();
  let reader = stdin.lock();
  let stdout = std::io::stdout();
  let writer = stdout.lock();
  macro_rules! with_wrapper {
    ($($wrapper:expr)?) => {{
      let mut writer = $($wrapper)?(writer);
      solve(reader, &mut writer)?;
      writer.flush()
    }};
  }
  if cfg!(debug_assertions) {
    with_wrapper!()
  } else if INTERACTIVE {
    with_wrapper!(std::io::LineWriter::new)
  } else {
    with_wrapper!(std::io::BufWriter::new)
  }
}

fn solve<R, W>(reader: R, mut writer: W) -> std::io::Result<()>
where
  R: BufRead,
  W: Write,
{
  let mut _scanner = lib::io::Scanner::new(reader);
  #[allow(unused_macros)]
  macro_rules! scan {
    ($T:ty) => {
      _scanner.parse_next::<$T>()?.unwrap()
    };
    ($($T:ty),+) => {
      ($(scan!($T)),+)
    };
    ($T:ty; $n:expr) => {
      _scanner.parse_next_n::<$T>($n)?.unwrap()
    };
    ($($T:ty),+; $n:expr) => {
      iter::repeat_with(|| -> std::io::Result<_> { Ok(($(scan!($T)),+)) })
        .take($n)
        .collect::<std::io::Result<Vec<_>>>()?
    };
  }
  #[allow(unused_macros)]
  macro_rules! scan_bytes_map {
    ($f:expr) => {
      _scanner.map_next_bytes($f)?
    };
    ($f:expr; $n:expr) => {
      _scanner.map_next_bytes_n($n, $f)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! print {
    ($($arg:tt)*) => {
      write!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! println {
    ($($arg:tt)*) => {
      writeln!(writer, $($arg)*)?
    };
  }
  #[allow(unused_macros)]
  macro_rules! answer {
    ($($arg:tt)*) => {{
      println!($($arg)*);
      return Ok(());
    }};
  }
  {
    const MOD: u64 = 1_000_000_007;

    fn mod_pow(mut x: u64, mut n: u64) -> u64 {
      let mut acc = 1;
      while n > 0 {
        if n % 2 == 1 {
          acc *= x;
          acc %= MOD;
        }
        x *= x;
        x %= MOD;
        n /= 2;
      }
      acc
    }

    let n = scan!(usize);
    let a = scan!(u64; n);

    if a.iter().any(|&a_i| a_i == 0) {
      answer!("{}", 0);
    }

    use lib::algebra::structures::*;
    use lib::sequences::SegmentTree;

    #[derive(Clone, Copy, Debug)]
    pub struct M(u64, Option<(u64, u64)>);

    impl Magma for M {
      fn op(&self, rhs: &Self) -> Self {
        let rn = rhs.0;
        let inner = match (self.1, rhs.1) {
          (Some(lhs), Some(rhs)) => {
            let p = lhs.1 * rhs.1;
            if p < 1_000_000_000 {
              Some((lhs.0 * mod_pow(lhs.1, rn) % MOD * rhs.0 % MOD, p))
            } else {
              None
            }
          }
          _ => None,
        };
        M(self.0 + rhs.0, inner)
      }
    }

    impl AssociativeMagma for M {}

    impl UnitalMagma for M {
      fn identity() -> Self {
        M(0, Some((1, 1)))
      }
    }

    let a_segtree = a
      .iter()
      .map(|&a_i| M(1, Some((a_i, a_i))))
      .collect::<SegmentTree<_>>();

    let mut ans = 1;
    for l in 0..n {
      let mut ok = l;
      let mut ng = n;
      let M(_, mut ok_t) = a_segtree.fold(l..ok + 1);
      while ng - ok > 1 {
        let mid = (ok + ng) / 2;
        let M(_, t) = a_segtree.fold(l..mid + 1);
        if t.is_some() {
          ok_t = t;
          ok = mid;
        } else {
          ng = mid;
        }
      }
      if let Some(t) = ok_t {
        ans *= t.0;
        ans %= MOD;
      }
    }
    println!("{}", ans);
  }
  #[allow(unreachable_code)]
  Ok(())
}
0