結果

問題 No.1084 積の積
ユーザー masayoshi361masayoshi361
提出日時 2020-06-19 23:41:29
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 42 ms / 2,000 ms
コード長 8,245 bytes
コンパイル時間 1,973 ms
コンパイル使用メモリ 183,616 KB
実行使用メモリ 6,912 KB
最終ジャッジ日時 2024-07-03 16:01:35
合計ジャッジ時間 3,591 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 40 ms
6,784 KB
testcase_05 AC 38 ms
6,784 KB
testcase_06 AC 38 ms
6,784 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 42 ms
6,784 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 3 ms
5,376 KB
testcase_12 AC 19 ms
5,376 KB
testcase_13 AC 40 ms
6,656 KB
testcase_14 AC 15 ms
5,376 KB
testcase_15 AC 14 ms
5,376 KB
testcase_16 AC 40 ms
6,912 KB
testcase_17 AC 16 ms
5,376 KB
testcase_18 AC 27 ms
5,376 KB
testcase_19 AC 36 ms
6,656 KB
testcase_20 AC 10 ms
5,376 KB
testcase_21 AC 15 ms
5,376 KB
testcase_22 AC 12 ms
5,376 KB
testcase_23 AC 24 ms
5,376 KB
testcase_24 AC 21 ms
5,376 KB
testcase_25 AC 36 ms
6,784 KB
testcase_26 AC 25 ms
6,784 KB
testcase_27 AC 26 ms
6,784 KB
testcase_28 AC 27 ms
6,912 KB
testcase_29 AC 27 ms
6,784 KB
testcase_30 AC 29 ms
6,784 KB
testcase_31 AC 29 ms
6,784 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

//header
#ifdef LOCAL
    #include "cxx-prettyprint-master/prettyprint.hpp"
    #define debug(x) cout << x << endl
#else
    #define debug(...) 42
#endif
    #pragma GCC optimize("Ofast")
    #include <bits/stdc++.h>
    //types
    using namespace std;
    using ll = long long;
    using ul = unsigned long long;
    using ld = long double;
    typedef pair < ll , ll > Pl;        
    typedef pair < int, int > Pi;
    typedef vector<ll> vl;
    typedef vector<int> vi;
    template< typename T >
    using mat = vector< vector< T > >;
    template< int mod >
    struct modint {
        int x;

        modint() : x(0) {}

        modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

        modint &operator+=(const modint &p) {
            if((x += p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator-=(const modint &p) {
            if((x += mod - p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator*=(const modint &p) {
            x = (int) (1LL * x * p.x % mod);
            return *this;
        }

        modint &operator/=(const modint &p) {
            *this *= p.inverse();
            return *this;
        }

        modint operator-() const { return modint(-x); }

        modint operator+(const modint &p) const { return modint(*this) += p; }

        modint operator-(const modint &p) const { return modint(*this) -= p; }

        modint operator*(const modint &p) const { return modint(*this) *= p; }

        modint operator/(const modint &p) const { return modint(*this) /= p; }

        bool operator==(const modint &p) const { return x == p.x; }

        bool operator!=(const modint &p) const { return x != p.x; }

        modint inverse() const {
            int a = x, b = mod, u = 1, v = 0, t;
            while(b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
            }
            return modint(u);
        }

        modint pow(int64_t n) const {
            modint ret(1), mul(x);
            while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
            }
            return ret;
        }

        friend ostream &operator<<(ostream &os, const modint &p) {
            return os << p.x;
        }

        friend istream &operator>>(istream &is, modint &a) {
            int64_t t;
            is >> t;
            a = modint< mod >(t);
            return (is);
        }

        static int get_mod() { return mod; }
    };
    //abreviations
    #define all(x) (x).begin(), (x).end()
    #define rall(x) (x).rbegin(), (x).rend()
    #define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
    #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
    #define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define SZ(x) ((int)(x).size())
    #define pb(x) push_back(x)
    #define eb(x) emplace_back(x)
    #define mp make_pair
    #define print(x) cout << x << endl
    #define vsum(x) accumulate(x, 0LL)
    #define vmax(a) *max_element(all(a))
    #define vmin(a) *min_element(all(a))
    #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
    #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
    //functions
    ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
    ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
    template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
    template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
    template< typename T >
    T mypow(T x, ll n) {
        T ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
        }
        return ret;
    }
    ll modpow(ll x, ll n, const ll mod) {
        ll ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
            x%=mod;
            ret%=mod;
        }
        return ret;
    }
    uint64_t my_rand(void) {
        static uint64_t x = 88172645463325252ULL;
        x = x ^ (x << 13); x = x ^ (x >> 7);
        return x = x ^ (x << 17);
    }
    //graph template
    template< typename T >
    struct edge {
        int src, to;
        T cost;

        edge(int to, T cost) : src(-1), to(to), cost(cost) {}

        edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

        edge &operator=(const int &x) {
            to = x;
            return *this;
        }
        operator int() const { return to; }
    };
    template< typename T >
    using Edges = vector< edge< T > >;
    template< typename T >
    using WeightedGraph = vector< Edges< T > >;
    using UnWeightedGraph = vector< vector< int > >;

//constant
//#define inf 1000000005LL
#define inf 4000000000000000005LL
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.0001;
const long double PI  = 3.141592653589793;
//library
template< typename Monoid >
struct SegmentTree {
    using F = function< Monoid(Monoid, Monoid) >;

    int sz;
    vector< Monoid > seg;

    const F f;
    const Monoid M1;

    SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) {
        sz = 1;
        while(sz < n) sz <<= 1;
        seg.assign(2 * sz, M1);
    }

    void set(int k, const Monoid &x) {
        seg[k + sz] = x;
    }

    void build() {
        for(int k = sz - 1; k > 0; k--) {
            seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
        }
    }

    void update(int k, const Monoid &x) {
        k += sz;
        seg[k] = x;
        while(k >>= 1) {
            seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
        }
    }

    Monoid query(int a, int b) {
        Monoid L = M1, R = M1;
        for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
            if(a & 1) L = f(L, seg[a++]);
            if(b & 1) R = f(seg[--b], R);
        }
        return f(L, R);
    }

    Monoid operator[](const int &k) const {
        return seg[k + sz];
    }

    template< typename C >
    int find_subtree(int a, const C &check, Monoid &M, bool type) {
        while(a < sz) {
            Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
            if(check(nxt)) a = 2 * a + type;
            else M = nxt, a = 2 * a + 1 - type;
        }
        return a - sz;
    }

    // check(seg[i])を満たす最小l<=iを返す.なければ-1
    template< typename C >
    int find_first(int a, const C &check) {
        Monoid L = M1;
        if(a <= 0) {
            if(check(f(L, seg[1]))) return find_subtree(1, check, L, false);
            return -1;
        }
        int b = sz;
        for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
            if(a & 1) {
                Monoid nxt = f(L, seg[a]);
                if(check(nxt)) return find_subtree(a, check, L, false);
                L = nxt;
                ++a;
            }
        }
        return -1;
    }

    template< typename C >
    int find_last(int b, const C &check) {
        Monoid R = M1;
        if(b >= sz) {
            if(check(f(seg[1], R))) return find_subtree(1, check, R, true);
            return -1;
        }
        int a = sz;
        for(b += sz; a < b; a >>= 1, b >>= 1) {
            if(b & 1) {
                Monoid nxt = f(seg[--b], R);
                if(check(nxt)) return find_subtree(b, check, R, true);
                R = nxt;
            }
        }
        return -1;
    }
};
int main(){
    const ll m = 1000000000;
    auto f = [&](ll a, ll b){
        if(a==-1||b==-1)return -1LL;
        if(a*b>=m)return -1LL;
        return a*b;
    };
    int n; cin>>n;
    vl a(n);
    rep(i, n)cin>>a[i];
    SegmentTree<ll> seg(n, f, 1);
    rep(i, n)seg.set(i, a[i]);
    seg.build();
    mint ans = 1;
    ll cnt = 0;
    ll b = 0;
    vl imos(n+1);
    rep(l, n){
        int ok = l+1, ng = n+1;
        ok = seg.find_first(l, [&](ll a){return a==-1;});
        if(ok==-1)ok = n;
        cnt+=ok-l;
        imos[ok]++;
        ans*=mypow<mint>(a[l], cnt);
        b+=1-imos[l];
        cnt-=b;
    }
    print(ans);
}
0