結果
問題 | No.1081 和の和 |
ユーザー | taotao54321 |
提出日時 | 2020-06-23 15:51:11 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 45,098 bytes |
コンパイル時間 | 2,439 ms |
コンパイル使用メモリ | 221,536 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-03 19:18:43 |
合計ジャッジ時間 | 2,705 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
ソースコード
/** * */ #define ASSERT_LV 1 // header {{{ #ifdef NDEBUG # undef NDEBUG #endif #ifndef ASSERT_LV # define ASSERT_LV 1 #endif #if ASSERT_LV == 0 # define NDEBUG #endif #if defined(__GNUC__) && !defined(__clang__) #include <bits/stdc++.h> #else #include <cassert> #include <cctype> #include <cerrno> #include <cfloat> #include <ciso646> #include <climits> //#include <clocale> #include <cmath> //#include <csetjmp> //#include <csignal> #include <cstdarg> #include <cstddef> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> //#include <cwchar> //#include <cwctype> #if __cplusplus >= 201103L //#include <ccomplex> #include <cfenv> #include <cinttypes> //#include <cstdalign> //#include <cstdbool> #include <cstdint> //#include <ctgmath> //#include <cuchar> #endif #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <exception> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <iterator> #include <limits> #include <list> //#include <locale> #include <map> #include <memory> #include <new> #include <numeric> #include <ostream> #include <queue> #include <set> #include <sstream> #include <stack> #include <stdexcept> #include <streambuf> #include <string> #include <typeinfo> #include <utility> #include <valarray> #include <vector> #if __cplusplus >= 201103L #include <array> //#include <atomic> #include <chrono> //#include <codecvt> //#include <condition_variable> #include <forward_list> //#include <future> #include <initializer_list> //#include <mutex> #include <random> #include <ratio> #include <regex> #include <scoped_allocator> //#include <system_error> #include <thread> #include <tuple> #include <typeindex> #include <type_traits> #include <unordered_map> #include <unordered_set> #endif #if __cplusplus >= 201402L //#include <shared_mutex> #endif #if __cplusplus >= 201703L #include <any> #include <charconv> //#include <execution> //#include <filesystem> #include <optional> //#include <memory_resource> #include <string_view> #include <variant> #endif #endif using namespace std; using i8 = int8_t; using u8 = uint8_t; using i16 = int16_t; using u16 = uint16_t; using i32 = int32_t; using u32 = uint32_t; using i64 = int64_t; using u64 = uint64_t; #ifdef __SIZEOF_INT128__ using i128 = __int128; using u128 = unsigned __int128; #endif using f32 = float; using f64 = double; using f80 = long double; template<class T> constexpr T PROCON_INF(); template<> constexpr i32 PROCON_INF<i32>() { return 1'010'000'011; } template<> constexpr i64 PROCON_INF<i64>() { return INT64_C(1'010'000'000'000'000'017); } template<> constexpr f32 PROCON_INF<f32>() { return 1e19F; } template<> constexpr f64 PROCON_INF<f64>() { return 1e100; } template<> constexpr f80 PROCON_INF<f80>() { return 1e100L; } // }}} using Int = i64; using Real = f80; constexpr Int MOD = 1'000'000'007; //constexpr Int MOD = 998'244'353; constexpr Real EPS = Real(1e-10L); constexpr int COUT_PREC = 15; constexpr bool COUT_AUTOFLUSH = false; // procon {{{ static_assert(is_same_v<Int,i64> || is_same_v<Int,i32>); static_assert(is_same_v<Real,f80> || is_same_v<Real,f64> || is_same_v<Real,f32>); #define CPP_STR(x) CPP_STR_I(x) #define CPP_CAT(x,y) CPP_CAT_I(x,y) #define CPP_STR_I(args...) #args #define CPP_CAT_I(x,y) x ## y #define SFINAE(pred...) std::enable_if_t<(pred), std::nullptr_t> = nullptr #define ASSERT(expr...) assert((expr)) #if defined(PROCON_LOCAL) || ASSERT_LV >= 2 # define ASSERT_LOCAL(expr...) assert((expr)) #else # define ASSERT_LOCAL(expr...) #endif constexpr Int INF = PROCON_INF<Int>(); constexpr Real FINF = PROCON_INF<Real>(); [[maybe_unused]] constexpr Real PI = Real(3.141592653589793238462643383279502884197L); template<class T> constexpr T SQRT_MAX(); template<> constexpr i32 SQRT_MAX<i32>() { return 46340; } template<> constexpr i64 SQRT_MAX<i64>() { return INT64_C(3037000499); } template<class T, SFINAE(is_signed_v<T>)> constexpr T ABS(T x) noexcept { return x < 0 ? -x : x; } constexpr bool LT_EPS(Real lhs, Real rhs, Real eps=EPS) { return lhs < rhs-eps; } constexpr bool GT_EPS(Real lhs, Real rhs, Real eps=EPS) { return lhs > rhs+eps; } constexpr bool EQ_EPS(Real lhs, Real rhs, Real eps=EPS) { return ABS(lhs-rhs) <= eps; } constexpr bool EQ_EXACT(Real lhs, Real rhs) { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wfloat-equal" return lhs == rhs; #pragma GCC diagnostic pop } #define FOR(i, start, end) for(Int i = (start), CPP_CAT(i,xxxx_end)=(end); i < CPP_CAT(i,xxxx_end); ++i) #define REP(i, n) FOR(i, 0, n) #define LOOP(n) REP(CPP_CAT(macro_loop_counter,__COUNTER__), n) #define ALL(f,c,...) (([&](decltype((c)) cccc) { return (f)(std::begin(cccc), std::end(cccc), ## __VA_ARGS__); })(c)) #define SLICE(f,c,l,r,...) (([&](decltype((c)) cccc, decltype((l)) llll, decltype((r)) rrrr) {\ auto iiii = llll <= rrrr ? std::begin(cccc)+llll : std::end(cccc);\ auto jjjj = llll <= rrrr ? std::begin(cccc)+rrrr : std::end(cccc);\ return (f)(iiii, jjjj, ## __VA_ARGS__);\ })(c,l,r)) #define LIFT(f) ([](auto&&... args) -> decltype(auto) { return (f)(std::forward<decltype(args)>(args)...); }) template<class C> constexpr Int SIZE(const C& c) noexcept { return Int(c.size()); } template<class T, size_t N> constexpr Int SIZE(const T (&)[N]) noexcept { return Int(N); } constexpr bool is_odd (Int x) { return x%2 != 0; } constexpr bool is_even(Int x) { return x%2 == 0; } constexpr Int PARITY(Int x) { return x%2==0 ? 0 : 1; } template<class T> constexpr Int CMP(T x, T y) noexcept { return (y<x) - (x<y); } template<class T> constexpr Int SGN(T x) noexcept { return CMP(x,T(0)); } template<class T1, class T2, class Comp=less<>, SFINAE( is_integral_v<T1> && is_integral_v<T2> && is_signed_v<T1> != is_unsigned_v<T2> )> constexpr auto MAX(T1 x, T2 y, Comp comp={}) { return max<common_type_t<T1,T2>>({x,y}, comp); } template<class T1, class T2, class Comp=less<>, SFINAE( is_floating_point_v<T1> && is_floating_point_v<T2> )> constexpr auto MAX(T1 x, T2 y, Comp comp={}) { return max<common_type_t<T1,T2>>({x,y}, comp); } template<class T, class Comp=less<>> constexpr const T& MAX(const T& x, const T& y, Comp comp={}) { return max(x, y, comp); } template<class T, class Comp=less<>> constexpr T MAX(initializer_list<T> ilist, Comp comp={}) { return max(ilist, comp); } template<class T1, class T2, class Comp=less<>, SFINAE( is_integral_v<T1> && is_integral_v<T2> && is_signed_v<T1> != is_unsigned_v<T2> )> constexpr auto MIN(T1 x, T2 y, Comp comp={}) { return min<common_type_t<T1,T2>>({x,y}, comp); } template<class T1, class T2, class Comp=less<>, SFINAE( is_floating_point_v<T1> && is_floating_point_v<T2> )> constexpr auto MIN(T1 x, T2 y, Comp comp={}) { return min<common_type_t<T1,T2>>({x,y}, comp); } template<class T, class Comp=less<>> constexpr const T& MIN(const T& x, const T& y, Comp comp={}) { return min(x, y, comp); } template<class T, class Comp=less<>> constexpr T MIN(initializer_list<T> ilist, Comp comp={}) { return min(ilist, comp); } template<class T, class U, class Comp=less<>> constexpr bool chmax(T& xmax, const U& x, Comp comp={}) noexcept { if(comp(xmax, x)) { xmax = x; return true; } return false; } template<class T, class U, class Comp=less<>> constexpr bool chmin(T& xmin, const U& x, Comp comp={}) noexcept { if(comp(x, xmin)) { xmin = x; return true; } return false; } template<class BinaryFunc, class UnaryFunc> auto ON(BinaryFunc&& bf, UnaryFunc&& uf) { return [bf=forward<BinaryFunc>(bf),uf=forward<UnaryFunc>(uf)](const auto& x, const auto& y) { return bf(uf(x), uf(y)); }; } template<class F> auto LT_ON(F&& f) { return ON(less<>{}, forward<F>(f)); } template<class F> auto GT_ON(F&& f) { return ON(greater<>{}, forward<F>(f)); } struct IDENTITY { using is_transparent = void; template<class T> constexpr decltype(auto) operator()(T&& x) const { return forward<T>(x); } }; // ビット演算 {{{ // 引数は [-INF,INF] のみ想定 constexpr Int BIT_I(Int i) { return Int(1) << i; } constexpr Int BIT_I_1(Int i) { return BIT_I(i) - 1; } constexpr Int BIT_GET(Int x, Int i) { return x & BIT_I(i); } constexpr bool BIT_TEST(Int x, Int i) { return BIT_GET(x,i) != 0; } constexpr Int BIT_SET(Int x, Int i) { return x | BIT_I(i); } constexpr Int BIT_CLEAR(Int x, Int i) { return x & ~BIT_I(i); } constexpr Int BIT_FLIP(Int x, Int i) { return x ^ BIT_I(i); } constexpr Int BIT_ASSIGN(Int x, Int i, bool b) { return b ? BIT_SET(x,i) : BIT_CLEAR(x,i); } /*constexpr*/ Int BIT_COUNT_LEADING_ZEROS(Int x) { if(is_same_v<Int,i64>) return x==0 ? 64 : __builtin_clzll(u64(x)); if(is_same_v<Int,i32>) return x==0 ? 32 : __builtin_clz(u32(x)); ASSERT(false); } /*constexpr*/ Int BIT_COUNT_TRAILING_ZEROS(Int x) { if(is_same_v<Int,i64>) return x==0 ? 64 : __builtin_ctzll(u64(x)); if(is_same_v<Int,i32>) return x==0 ? 32 : __builtin_clz(u32(x)); ASSERT(false); } /*constexpr*/ Int BIT_COUNT_ONES(Int x) { if(is_same_v<Int,i64>) return __builtin_popcountll(u64(x)); if(is_same_v<Int,i32>) return __builtin_popcount(u32(x)); ASSERT(false); } // 1の個数が奇数なら1, 偶数なら0を返す /*constexpr*/ Int BIT_PARITY(Int x) { if(is_same_v<Int,i64>) return __builtin_parityll(u64(x)); if(is_same_v<Int,i32>) return __builtin_parity(u32(x)); ASSERT(false); } // X ⊆ {0,1,...,n-1}, |X| = k なる部分集合 X を昇順に列挙する // comb(n,k) 個 // // ``` // Int x = BIT_I_1(3); // do { // // ... // } while(BIT_NEXT_SET_SIZED(x, 10)); // ``` /*constexpr*/ bool BIT_NEXT_SET_SIZED(Int& x, Int n) { if(x == 0) return false; Int t = (x|(x-1)) + 1; x = t | ((~t&(t-1)) >> (BIT_COUNT_TRAILING_ZEROS(x)+1)); return x < BIT_I(n); } // 集合 Y の部分集合 X を昇順に列挙する // 2^|Y| 個 // // ``` // Int y = 0b10101; // Int x = 0; // do { // // ... // } while(BIT_NEXT_SUBSET(x, y)); // ``` constexpr bool BIT_NEXT_SUBSET(Int& x, Int y) { if(x == y) return false; x = (x-y) & y; return true; } // 集合 Y の部分集合 X を降順に列挙する // 2^|Y| 個 // // ``` // Int y = 0b10101; // Int x = y; // do { // // ... // } while(BIT_PREV_SUBSET(x, y)); // ``` constexpr bool BIT_PREV_SUBSET(Int& x, Int y) { if(x == 0) return false; x = (x-1) & y; return true; } // 集合 Y を包含する集合 X ⊆ {0,1,...,n-1} を昇順に列挙する // 2^(n-|Y|) 個 // // ``` // Int y = 0b00010101; // Int x = y; // do { // // ... // } while(BIT_NEXT_SUPERSET(x, 8, y)); // ``` constexpr bool BIT_NEXT_SUPERSET(Int& x, Int n, Int y) { x = (x+1) | y; return x < BIT_I(n); } // }}} // [lo,hi) 内で pred が真になる最大値を返す // 全部NGの場合 lo-1 を返す template<class Pred> /*constexpr*/ Int bisect_integer(Int lo, Int hi, Pred pred) { ASSERT(lo < hi); if(!pred(lo)) return lo-1; while(lo+1 < hi) { Int mid = (lo+hi) / 2; if(pred(mid)) lo = mid; else hi = mid; } return lo; } template<class Pred> /*constexpr*/ Real bisect_real(Real lo, Real hi, Pred pred, Real eps=EPS) { ASSERT_LOCAL(!GT_EPS(lo,hi,eps)); if(lo > hi) swap(lo, hi); while(!EQ_EPS(lo,hi,eps)) { Real mid = (lo+hi) / 2; if(pred(mid)) lo = mid; else hi = mid; } return lo; } template<class Monoid> /*constexpr*/ Monoid fastpow(const Monoid& x, Int e, const Monoid& unity) { ASSERT(e >= 0); if(e == 0) return unity; Monoid res = unity; Monoid cur = x; for(;;) { if(e & 1) res *= cur; e >>= 1; if(e == 0) break; cur *= cur; } return res; } /*constexpr*/ Int ipow(Int x, Int e) { return fastpow<Int>(x,e,1); } /*constexpr*/ Int sqrt_floor(Int x) { ASSERT(x >= 0); Int lo = 0; Int hi = MIN(x/2+2, SQRT_MAX<Int>()+1); return bisect_integer(lo, hi, [x](Int r) { return r*r <= x; }); } /*constexpr*/ Int sqrt_ceil(Int x) { Int r = sqrt_floor(x); return r*r == x ? r : r+1; } /*constexpr*/ Int log2_ceil(Int x) { ASSERT(x > 0); if(is_same_v<Int,i64>) return 64 - BIT_COUNT_LEADING_ZEROS(x-1); if(is_same_v<Int,i32>) return 32 - BIT_COUNT_LEADING_ZEROS(x-1); ASSERT(false); } /*constexpr*/ Int log2_floor(Int x) { ASSERT(x > 0); if(is_same_v<Int,i64>) return 63 - BIT_COUNT_LEADING_ZEROS(x); if(is_same_v<Int,i32>) return 31 - BIT_COUNT_LEADING_ZEROS(x); ASSERT(false); } // x > 0 /*constexpr*/ Int pow2_ceil(Int x) { return BIT_I(log2_ceil(x)); } // x > 0 /*constexpr*/ Int pow2_floor(Int x) { return BIT_I(log2_floor(x)); } // Haskell の divMod と同じ constexpr pair<Int,Int> divmod(Int a, Int b) { Int q = a / b; Int r = a % b; if((b>0 && r<0) || (b<0 && r>0)) { --q; r += b; } return {q,r}; } constexpr Int div_ceil(Int a, Int b) { Int q = a / b; Int r = a % b; if((b>0 && r>0) || (b<0 && r<0)) ++q; return q; } constexpr Int div_floor(Int a, Int b) { return divmod(a,b).first; } constexpr Int modulo(Int a, Int b) { return divmod(a,b).second; } /*constexpr*/ Int align_ceil(Int x, Int align) { ASSERT(align > 0); return div_ceil(x,align) * align; } /*constexpr*/ Int align_floor(Int x, Int align) { ASSERT(align > 0); return div_floor(x,align) * align; } template<class InputIt, class BinaryOp> auto FOLD(InputIt first, InputIt last, typename iterator_traits<InputIt>::value_type init, BinaryOp op) { for(; first != last; ++first) init = op(move(init), *first); return init; } template<class InputIt, class BinaryOp> auto FOLD1(InputIt first, InputIt last, BinaryOp op) { auto init = *first++; return FOLD(first, last, init, op); } template<class InputIt> auto SUM(InputIt first, InputIt last) { return FOLD1(first, last, plus<>{}); } template<class C, class Pred> void ERASE_IF(C& c, Pred pred) { c.erase(ALL(remove_if,c,pred), end(c)); } template<class C> void UNIQ(C& c) { c.erase(ALL(unique,c), end(c)); } template<class C> void SORT_UNIQ(C& c) { ALL(sort, c); UNIQ(c); } [[noreturn]] void EXIT() { cout.flush(); #ifdef PROCON_LOCAL cerr.flush(); exit(0); #else _Exit(0); #endif } // tuple {{{ template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) == I)> void tuple_enumerate(tuple<TS...>&, F&&) {} template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) > I)> void tuple_enumerate(tuple<TS...>& t, F&& f) { f(I, get<I>(t)); tuple_enumerate<I+1>(t, forward<F>(f)); } template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) == I)> void tuple_enumerate(const tuple<TS...>&, F&&) {} template<Int I=0, class F, class... TS, SFINAE(sizeof...(TS) > I)> void tuple_enumerate(const tuple<TS...>& t, F&& f) { f(I, get<I>(t)); tuple_enumerate<I+1>(t, forward<F>(f)); } // }}} // container {{{ template<class T> struct is_container : false_type {}; template<class T> inline constexpr bool is_container_v = is_container<T>::value; template<class T, size_t N> struct is_container<array<T,N>> : true_type {}; template<class... Args> struct is_container<vector<Args...>> : true_type {}; template<class... Args> struct is_container<deque<Args...>> : true_type {}; template<class... Args> struct is_container<list<Args...>> : true_type {}; template<class... Args> struct is_container<forward_list<Args...>> : true_type {}; template<class... Args> struct is_container<set<Args...>> : true_type {}; template<class... Args> struct is_container<multiset<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_set<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_multiset<Args...>> : true_type {}; template<class... Args> struct is_container<map<Args...>> : true_type {}; template<class... Args> struct is_container<multimap<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_map<Args...>> : true_type {}; template<class... Args> struct is_container<unordered_multimap<Args...>> : true_type {}; template<class T, class Enable=void> struct ProconHash { size_t operator()(const T& x) const noexcept { return hash<T>{}(x); } }; template<class T> size_t procon_hash_value(const T& x) noexcept { return ProconHash<T>{}(x); } size_t procon_hash_combine(size_t h1, size_t h2) noexcept { constexpr size_t M = UINT64_C(0xc6a4a7935bd1e995); constexpr int R = 47; h2 *= M; h2 ^= h2 >> R; h2 *= M; h1 ^= h2; h1 *= M; h1 += 0xe6546b64; return h1; } template<class T1, class T2> struct ProconHash<pair<T1,T2>> { size_t operator()(const pair<T1,T2>& p) const noexcept { size_t h1 = procon_hash_value(p.first); size_t h2 = procon_hash_value(p.second); return procon_hash_combine(h1, h2); } }; template<class... TS> struct ProconHash<tuple<TS...>> { size_t operator()(const tuple<TS...>& t) const noexcept { size_t h = 0; tuple_enumerate(t, [&h](Int, const auto& e) { h = procon_hash_combine(h, procon_hash_value(e)); }); return h; } }; template<class C> struct ProconHash<C,enable_if_t<is_container_v<C>>> { size_t operator()(const C& c) const noexcept { size_t h = 0; for(const auto& e : c) h = procon_hash_combine(h, procon_hash_value(e)); return h; } }; template<class T, class Hash=ProconHash<T>, class Eq=equal_to<T>> using HashSet = unordered_set<T,Hash,Eq>; template<class K, class V, class Hash=ProconHash<K>, class Eq=equal_to<K>> using HashMap = unordered_map<K,V,Hash,Eq>; template<class T, class Hash=ProconHash<T>, class Eq=equal_to<T>> using HashMultiset = unordered_multiset<T,Hash,Eq>; template<class K, class V, class Hash=ProconHash<K>, class Eq=equal_to<K>> using HashMultimap = unordered_multimap<K,V,Hash,Eq>; template<class T> auto vec_make(Int n, T x) { return vector<T>(n, x); } template<class T, class... Args, SFINAE(sizeof...(Args) >= 2)> auto vec_make(Int n, Args... args) { auto inner = vec_make<T>(args...); return vector<decltype(inner)>(n, inner); } template<class T> auto vec_reserve(Int cap) { vector<T> res; res.reserve(cap); return res; } template<class T=Int> auto vec_iota(Int n, T init={}) { vector<Int> res(n); ALL(iota, res, init); return res; } template<class ForwardIt, class BinaryOp> auto vec_scan(ForwardIt first, ForwardIt last, typename iterator_traits<ForwardIt>::value_type init, BinaryOp op) { using T = typename iterator_traits<ForwardIt>::value_type; auto res = vec_reserve<T>(distance(first,last)+1); res.emplace_back(init); for(; first != last; ++first) { init = op(move(init), *first); res.emplace_back(init); } return res; } template<class ForwardIt> auto vec_cum(ForwardIt first, ForwardIt last) { using T = typename iterator_traits<ForwardIt>::value_type; return vec_scan(first, last, T{}, plus<>{}); } template<class T, class Comp, class Cont=vector<T>> auto priority_queue_make(const Comp& comp, Cont&& cont={}) { return priority_queue<T,remove_reference_t<Cont>,Comp>(comp, forward<Cont>(cont)); } template<class T, class Comp> auto priority_queue_reserve(const Comp& comp, Int cap) { return priority_queue<T,vector<T>,Comp>(comp, vec_reserve<T>(cap)); } template<class T, size_t N, size_t... NS> struct ArrayType { using type = array<typename ArrayType<T,NS...>::type,N>; }; template<class T, size_t N> struct ArrayType<T,N> { using type = array<T,N>; }; template<class T, size_t... NS> using Array = typename ArrayType<T,NS...>::type; template<class T, size_t N> T& array_at(Array<T,N>& ary, Int i) { return ary[i]; } template<class T, size_t N, size_t... NS, class... Args, SFINAE(sizeof...(NS) > 0 && sizeof...(Args) > 0)> T& array_at(Array<T,N,NS...>& ary, Int i, Args... args) { return array_at<T,NS...>(ary[i], args...); } template<class T, size_t N> const T& array_at(const Array<T,N>& ary, Int i) { return ary[i]; } template<class T, size_t N, size_t... NS, class... Args, SFINAE(sizeof...(NS) > 0 && sizeof...(Args) > 0)> const T& array_at(const Array<T,N,NS...>& ary, Int i, Args... args) { return array_at<T,NS...>(ary[i], args...); } template<class T, class C> T POP(stack<T,C>& stk) { T x = stk.top(); stk.pop(); return x; } template<class T, class C> T POP(queue<T,C>& que) { T x = que.front(); que.pop(); return x; } template<class T, class C, class Comp> T POP(priority_queue<T,C,Comp>& que) { T x = que.top(); que.pop(); return x; } // }}} // fixpoint {{{ template<class F> class FixPoint { public: explicit constexpr FixPoint(F&& f) : f_(forward<F>(f)) {} template<class... Args> constexpr decltype(auto) operator()(Args&&... args) const { return f_(*this, forward<Args>(args)...); } private: F f_; }; template<class F> constexpr decltype(auto) FIX(F&& f) { return FixPoint<F>(forward<F>(f)); } template<class F, size_t... NS> class FixPointMemo { public: explicit FixPointMemo(F&& f) : f_(forward<F>(f)) {} template<class... Args> decltype(auto) operator()(Args... args) const { using R = decltype(f_(*this,args...)); static Array<bool,NS...> done {}; static Array<R,NS...> memo; if(!array_at<bool,NS...>(done,args...)) { array_at<R,NS...>(memo,args...) = f_(*this,args...); array_at<bool,NS...>(done,args...) = true; } return array_at<R,NS...>(memo,args...); } private: F f_; }; template<size_t... NS, class F> decltype(auto) FIXMEMO(F&& f) { return FixPointMemo<F,NS...>(forward<F>(f)); } // }}} // math {{{ /*constexpr*/ Int GCD(Int a, Int b) noexcept { /*constexpr*/ auto f_gcd = FIX([](auto&& self, Int aa, Int bb) -> Int { if(bb == 0) return aa; return self(bb, aa%bb); }); return f_gcd(ABS(a), ABS(b)); } /*constexpr*/ Int LCM(Int a, Int b) noexcept { ASSERT(a != 0 && b != 0); /*constexpr*/ auto f_gcd = FIX([](auto&& self, Int aa, Int bb) -> Int { if(bb == 0) return aa; return self(bb, aa%bb); }); a = ABS(a); b = ABS(b); return a / f_gcd(a,b) * b; } /*constexpr*/ tuple<Int,Int,Int> EXTGCD(Int a, Int b) noexcept { /*constexpr*/ auto impl = FIX([](auto&& self, Int aa, Int bb, Int& x, Int& y) -> Int { if(bb == 0) { x = 1; y = 0; return aa; } Int g = self(bb, aa%bb, y, x); y -= (aa/bb)*x; return g; }); Int x{},y{}; Int g = impl(ABS(a), ABS(b), x, y); x *= SGN(a); y *= SGN(b); return make_tuple(g, x, y); } // }}} // string {{{ char chr_digit(Int n) { return char('0'+n); } Int ord_digit(char c) { return c-'0'; } char chr_lower(Int n) { return char('a'+n); } Int ord_lower(char c) { return c-'a'; } char chr_upper(Int n) { return char('A'+n); } Int ord_upper(char c) { return c-'A'; } auto str_reserve(Int cap) { string res; res.reserve(cap); return res; } // }}} // input {{{ template<class T> struct Integral1 { static_assert(is_integral_v<T> && !is_same_v<T,bool>); }; using Int1 = Integral1<Int>; template<class T, class Enable=void> struct Scan { using R = T; static R scan(istream& in) { R res; in >> res; return res; } }; template<class T> struct Scan<Integral1<T>> { using R = T; static R scan(istream& in) { return Scan<R>::scan(in) - 1; } }; template<class T1, class T2> struct Scan<pair<T1,T2>> { using R1 = typename Scan<T1>::R; using R2 = typename Scan<T2>::R; using R = pair<R1,R2>; static R scan(istream& in) { R1 x = Scan<T1>::scan(in); R2 y = Scan<T2>::scan(in); return {x,y}; } }; template<class T> auto tuple_scan_impl(istream& in) { return make_tuple(Scan<T>::scan(in)); } template<class T, class... TS, SFINAE(sizeof...(TS) > 0)> auto tuple_scan_impl(istream& in) { auto head = make_tuple(Scan<T>::scan(in)); return tuple_cat(head, tuple_scan_impl<TS...>(in)); } template<class... TS> struct Scan<tuple<TS...>> { using R = decltype(tuple_scan_impl<TS...>(cin)); static R scan(istream& in) { return tuple_scan_impl<TS...>(in); } }; template<class T=Int> auto RD() { return Scan<T>::scan(cin); } template<class T=Int> auto RD1() { return RD<Integral1<T>>(); } template<class T=Int> auto RD_VEC(Int n) { auto res = vec_reserve<typename Scan<T>::R>(n); LOOP(n) { res.emplace_back(RD<T>()); } return res; } template<class T=Int> auto RD1_VEC(Int n) { return RD_VEC<Integral1<T>>(n); } template<class T=Int> auto RD_VEC2(Int h, Int w) { auto res = vec_reserve<vector<typename Scan<T>::R>>(h); LOOP(h) { res.emplace_back(RD_VEC<T>(w)); } return res; } template<class T=Int> auto RD1_VEC2(Int h, Int w) { return RD_VEC2<Integral1<T>>(h, w); } // }}} // output {{{ template<class T, class Enable=void> struct Fmt { static void fmt(ostream& out, const T& x) { out << x; } }; template<class T> void fmt_write(ostream& out, const T& x) { Fmt<T>::fmt(out, x); } template<class T> string FMT_STR(const T& x) { ostringstream out; fmt_write(out, x); return out.str(); } template<class... TS> struct Fmt<tuple<TS...>> { static void fmt(ostream& out, const tuple<TS...>& t) { tuple_enumerate(t, [&out](Int i, const auto& e) { if(i != 0) out << ' '; fmt_write(out, e); }); } }; template<class T1, class T2> struct Fmt<pair<T1,T2>> { static void fmt(ostream& out, const pair<T1,T2>& p) { return fmt_write(out, make_tuple(p.first,p.second)); } }; template<class C> struct Fmt<C,enable_if_t<is_container_v<C>>> { static void fmt(ostream& out, const C& c) { for(auto it = begin(c); it != end(c); ++it) { if(it != begin(c)) out << ' '; fmt_write(out, *it); } } }; void PRINT() {} template<class T, class... TS> void PRINT(const T& x, const TS&... args) { fmt_write(cout, x); if(sizeof...(args) > 0) { cout << ' '; PRINT(args...); } } template<class... TS> void PRINTLN(const TS&... args) { PRINT(args...); cout << '\n'; } // }}} // debug {{{ template<class T, class Enable=void> struct Dbg { static void dbg(ostream& out, const T& x) { out << x; } }; template<class T> void dbg_write(ostream& out, const T& x) { Dbg<T>::dbg(out, x); } template<class T> string DBG_STR(const T& x) { ostringstream out; dbg_write(out, x); return out.str(); } template<> struct Dbg<Int> { static void dbg(ostream& out, Int x) { if(x == INF) out << "INF"; else if(x == -INF) out << "-INF"; else out << x; } }; template<> struct Dbg<Real> { static void dbg(ostream& out, Real x) { if(EQ_EXACT(x, FINF)) out << "FINF"; else if(EQ_EXACT(x, -FINF)) out << "-FINF"; else out << x; } }; template<class T, size_t N> struct Dbg<T[N]> { static void dbg(ostream& out, const T (&ary)[N]) { out << "["; REP(i, N) { if(i != 0) out << ","; dbg_write(out, ary[i]); } out << "]"; } }; template<size_t N> struct Dbg<char[N]> { static void dbg(ostream& out, const char (&s)[N]) { out << s; } }; template<class... TS> struct Dbg<tuple<TS...>> { static void dbg(ostream& out, const tuple<TS...>& t) { out << "("; tuple_enumerate(t, [&out](Int i, const auto& e) { if(i != 0) out << ","; dbg_write(out, e); }); out << ")"; } }; template<class T1, class T2> struct Dbg<pair<T1,T2>> { static void dbg(ostream& out, const pair<T1,T2>& p) { return dbg_write(out, make_tuple(p.first,p.second)); } }; template<class C> struct Dbg<C,enable_if_t<is_container_v<C>>> { static void dbg(ostream& out, const C& c) { out << "["; for(auto it = begin(c); it != end(c); ++it) { if(it != begin(c)) out << ","; dbg_write(out, *it); } out << "]"; } }; template<class T, class C> struct Dbg<stack<T,C>> { static void dbg(ostream& out, stack<T,C> stk) { out << "["; while(!stk.empty()) { dbg_write(out,stk.top()); stk.pop(); if(!stk.empty()) out << ","; } out << "]"; } }; template<class T, class C> struct Dbg<queue<T,C>> { static void dbg(ostream& out, queue<T,C> que) { out << "["; while(!que.empty()) { dbg_write(out,que.front()); que.pop(); if(!que.empty()) out << ","; } out << "]"; } }; template<class T, class C, class Comp> struct Dbg<priority_queue<T,C,Comp>> { static void dbg(ostream& out, priority_queue<T,C,Comp> que) { out << "["; while(!que.empty()) { dbg_write(out,que.top()); que.pop(); if(!que.empty()) out << ","; } out << "]"; } }; template<class T> void DBG_IMPL(Int line, const char* expr, const T& value) { cerr << "[L " << line << "]: "; cerr << expr << " = "; dbg_write(cerr, value); cerr << "\n"; } void DBG_IMPL_HELPER() {} template<class T, class... TS> void DBG_IMPL_HELPER(const T& x, const TS&... args) { dbg_write(cerr, x); if(sizeof...(args) > 0) { cerr << ","; DBG_IMPL_HELPER(args...); } } template<class... TS> void DBG_IMPL(Int line, const char* expr, const TS&... value) { cerr << "[L " << line << "]: "; cerr << "(" << expr << ") = ("; DBG_IMPL_HELPER(value...); cerr << ")\n"; } template<size_t N, class T, SFINAE(rank_v<T> == 0)> void DBG_DP_IMPL_HELPER(ostream& out, const T& x, const array<Int,N>&, const array<Int,N>&) { dbg_write(out, x); } template<size_t N, class T, SFINAE(rank_v<T> > 0)> void DBG_DP_IMPL_HELPER(ostream& out, const T& x, const array<Int,N>& sizes, const array<Int,N>& offs) { Int k = N - rank_v<T>; Int off = offs[k]; Int siz = sizes[k]; if(siz == 0) siz = extent_v<T> - off; out << "["; FOR(i, off, off+siz) { if(i != off) out << ","; DBG_DP_IMPL_HELPER(out, x[i], sizes, offs); } out << "]"; } template<class T, SFINAE(rank_v<T> > 0)> void DBG_DP_IMPL(Int line, const char* expr, const T& dp, const array<Int,rank_v<T>>& sizes={}, const array<Int,rank_v<T>>& offs={}) { cerr << "[L " << line << "]: "; cerr << expr << " = "; DBG_DP_IMPL_HELPER<rank_v<T>>(cerr, dp, sizes, offs); cerr << "\n"; } template<class T> void DBG_GRID_IMPL(Int line, const char* expr, const vector<T>& grid) { cerr << "[L " << line << "]: "; cerr << expr << ":\n"; for(const auto& row : grid) { dbg_write(cerr, row); cerr << "\n"; } cerr << "\n"; } #ifdef PROCON_LOCAL #define DBG(args...) DBG_IMPL(__LINE__, CPP_STR_I(args), args) #define DBG_DP(args...) DBG_DP_IMPL(__LINE__, CPP_STR_I(args), args) #define DBG_GRID(args...) DBG_GRID_IMPL(__LINE__, CPP_STR_I(args), args) #else #define DBG(args...) #define DBG_DP(args...) #define DBG_GRID(args...) #endif // }}} // modint {{{ template<class Mod> class ModIntT { private: Int v_{0}; // [0,Mod::value) static Int mod() { return Mod::value; } static Int normalize(Int x) { Int res = x % mod(); if(res < 0) res += mod(); return res; } public: ModIntT() = default; ModIntT(Int v) : v_(normalize(v)) {} // NOLINT(google-explicit-constructor) explicit operator Int() const { return v_; } ModIntT operator-() const { ModIntT res; res.v_ = v_==0 ? 0 : mod()-v_; return res; } ModIntT& operator+=(ModIntT rhs) { v_ += rhs.v_; if(v_ >= mod()) v_ -= mod(); return *this; } ModIntT& operator-=(ModIntT rhs) { v_ -= rhs.v_; if(v_ < 0) v_ += mod(); return *this; } ModIntT& operator*=(ModIntT rhs) { v_ *= rhs.v_; v_ %= mod(); return *this; } ModIntT& operator++() { return *this += 1; } ModIntT& operator--() { return *this -= 1; } ModIntT operator++(int) { return exchange(*this, *this+1); } ModIntT operator--(int) { return exchange(*this, *this-1); } [[nodiscard]] ModIntT pow(Int e) const { return fastpow(*this, e, ModIntT(1)); } [[nodiscard]] ModIntT inv() const { Int g,x; tie(g,x,ignore) = EXTGCD(v_, mod()); ASSERT(g == 1); return ModIntT(x); } friend ModIntT operator+(ModIntT lhs, ModIntT rhs) { return lhs += rhs; } friend ModIntT operator+(ModIntT lhs, Int rhs) { return lhs += rhs; } friend ModIntT operator+(Int lhs, ModIntT rhs) { return ModIntT(lhs) += rhs; } friend ModIntT operator-(ModIntT lhs, ModIntT rhs) { return lhs -= rhs; } friend ModIntT operator-(ModIntT lhs, Int rhs) { return lhs -= rhs; } friend ModIntT operator-(Int lhs, ModIntT rhs) { return ModIntT(lhs) -= rhs; } friend ModIntT operator*(ModIntT lhs, ModIntT rhs) { return lhs *= rhs; } friend ModIntT operator*(ModIntT lhs, Int rhs) { return lhs *= rhs; } friend ModIntT operator*(Int lhs, ModIntT rhs) { return ModIntT(lhs) *= rhs; } friend bool operator==(ModIntT lhs, ModIntT rhs) { return Int(lhs) == Int(rhs); } friend bool operator==(ModIntT lhs, Int rhs) { return lhs == ModIntT(rhs); } friend bool operator==(Int lhs, ModIntT rhs) { return ModIntT(lhs) == rhs; } friend bool operator!=(ModIntT lhs, ModIntT rhs) { return !(lhs == rhs); } friend bool operator!=(ModIntT lhs, Int rhs) { return !(lhs == rhs); } friend bool operator!=(Int lhs, ModIntT rhs) { return !(lhs == rhs); } }; template<class Mod> struct ProconHash<ModIntT<Mod>> { size_t operator()(ModIntT<Mod> x) const noexcept { return procon_hash_value(Int(x)); } }; template<class Mod> struct Scan<ModIntT<Mod>> { using R = ModIntT<Mod>; static R scan(istream& in) { Int v = Scan<Int>::scan(in); return ModIntT<Mod>(v); } }; template<class Mod> struct Fmt<ModIntT<Mod>> { static void fmt(ostream& out, ModIntT<Mod> x) { fmt_write(out, Int(x)); } }; template<class Mod> struct Dbg<ModIntT<Mod>> { static void dbg(ostream& out, ModIntT<Mod> x) { dbg_write(out, Int(x)); } }; template<Int M> using ModIntC = ModIntT<integral_constant<Int,M>>; using ModInt = ModIntC<MOD>; #define MODINT_DEFINE(alias, mod) \ struct mod { static Int value; }; \ Int mod::value; \ using alias = ModIntT<mod>; // }}} // rng {{{ // http://prng.di.unimi.it/xoroshiro128plus.c struct ProconUrbg { using result_type = u64; static constexpr result_type min() { return numeric_limits<result_type>::min(); } static constexpr result_type max() { return numeric_limits<result_type>::max(); } ProconUrbg(u64 s0, u64 s1) : state_{s0,s1} {} result_type operator()() { u64 s0 = state_[0]; u64 s1 = state_[1]; u64 res = s0 + s1; s1 ^= s0; state_[0] = ((s0<<24)|(s0>>40)) ^ s1 ^ (s1<<16); state_[1] = (s1<<37)|(s1>>27); return res; } private: u64 state_[2]; }; ProconUrbg& PROCON_URBG() { static u64 s0 = u64(chrono::system_clock::now().time_since_epoch().count()); static u64 s1 = u64(&s0); static ProconUrbg urbg(s0, s1); return urbg; } // }}} // init {{{ struct ProconInit { ProconInit() { cin.tie(nullptr); ios::sync_with_stdio(false); cin.exceptions(ios::failbit | ios::badbit); cout << fixed << setprecision(COUT_PREC); #ifdef PROCON_LOCAL cerr << fixed << setprecision(2); #endif if(COUT_AUTOFLUSH) cout << unitbuf; } } PROCON_INIT; // }}} // }}} // num {{{ vector<Int> divisors_proper(Int n) { if(n == 1) return {}; vector<Int> res(1, 1); Int d = 2; for(; d*d < n; ++d) { if(n % d == 0) { res.emplace_back(d); res.emplace_back(n/d); } } if(d*d == n) res.emplace_back(d); return res; } vector<Int> divisors(Int n) { vector<Int> res = divisors_proper(n); res.emplace_back(n); return res; } // 素因数分解 // (素因数,指数) のリストを返す // n >= 1 でなければならない // n == 1 の場合、空リストを返す vector<pair<Int,Int>> factorize(Int n) { ASSERT(n >= 1); vector<pair<Int,Int>> res; for(Int p = 2; p*p <= n; ++p) { Int e = 0; while(n % p == 0) { ++e; n /= p; } if(e > 0) res.emplace_back(p, e); } if(n > 1) res.emplace_back(n, 1); return res; } bool is_square(Int x) { Int r = sqrt_floor(x); return r*r == x; } // Miller-Rabin 法 // // 参考: http://miller-rabin.appspot.com/ bool is_prime_u32(u32 n) { static constexpr u32 AS[] { 2, 7, 61, }; static const auto mulmod32 = [](u32 a, u32 b, u32 m) -> u32 { u64 res = a; res *= b; res %= m; return static_cast<u32>(res); }; static const auto powmod32 = [](u32 a, u32 b, u32 m) -> u32 { u32 res = 1; while(b > 0) { if((b&1) != 0) res = mulmod32(res, a, m); a = mulmod32(a, a, m); b >>= 1; } return res; }; if(n <= 1) return false; if(n == 2) return true; if(n % 2 == 0) return false; u32 d = n-1; u32 s = __builtin_ctz(d); d >>= s; for(u32 a : AS) { if(a >= n) a %= n; if(a == 0) continue; u32 x = powmod32(a, d, n); if(x == 1 || x == n-1) continue; u32 r; for(r = 1; r < s; ++r) { x = mulmod32(x, x, n); if(x == 1) return false; if(x == n-1) break; } if(r == s) return false; } return true; } bool is_prime_u64(u64 n) { static constexpr u64 AS[] { 2, 325, 9375, 28178, 450775, 9780504, 1795265022, }; static const auto mulmod64 = [](u64 a, u64 b, u64 m) -> u64 { u128 res = a; res *= b; res %= m; return static_cast<u64>(res); }; static const auto powmod64 = [](u64 a, u64 b, u64 m) -> u64 { u64 res = 1; while(b > 0) { if((b&1) != 0) res = mulmod64(res, a, m); a = mulmod64(a, a, m); b >>= 1; } return res; }; if(n <= numeric_limits<u32>::max()) return is_prime_u32(static_cast<u32>(n)); if(n % 2 == 0) return false; u64 d = n-1; u64 s = __builtin_ctzll(d); d >>= s; for(u64 a : AS) { if(a >= n) a %= n; if(a == 0) continue; u64 x = powmod64(a, d, n); if(x == 1 || x == n-1) continue; u64 r; for(r = 1; r < s; ++r) { x = mulmod64(x, x, n); if(x == 1) return false; if(x == n-1) break; } if(r == s) return false; } return true; } bool is_prime(Int n) { ASSERT(n >= 0); if(is_same<Int,i64>::value) return is_prime_u64(u64(n)); if(is_same<Int,i32>::value) return is_prime_u32(u32(n)); ASSERT(false); } // エラトステネスのふるい template<Int N> bool (&is_prime_table())[N] { static_assert(N >= 3); static bool prime[N] {}; if(!prime[2]) { fill(begin(prime)+2, end(prime), true); for(Int i = 2; i*i <= N-1; ++i) { if(!prime[i]) continue; for(Int j = i+i; j < N; j += i) prime[j] = false; } } return prime; } // F(0) = 0 // F(1) = 1 // F(n) = F(n-1) + F(n-2) // // // decltype(auto) で受けると SIZE() が使える (auto だとポインタになってしまう) // decltype(auto) fib = fibonacci_table<1000>(); template<Int N> ModInt (&fibonacci_table())[N] { static_assert(N >= 2); static ModInt fib[N] {}; if(fib[1] != 1) { fib[0] = 0; fib[1] = 1; FOR(i, 2, N) { fib[i] = fib[i-1] + fib[i-2]; } } return fib; } template<Int N> struct Factorial { static_assert(N >= 1); static ModInt fac(Int n) { static decltype(auto) table = fac_table(); return table[n]; } static ModInt ifac(Int n) { static decltype(auto) table = ifac_table(); return table[n]; } static ModInt perm(Int n, Int r) { if(n < 0 || r < 0 || n < r) return 0; return fac(n) * ifac(n-r); } static ModInt comb(Int n, Int r) { if(n < 0 || r < 0 || n < r) return 0; return fac(n) * ifac(n-r) * ifac(r); } // O(r) // n が大きい場合に使う static ModInt comb_linear(Int n, Int r) { ModInt res = 1; REP(i, r) { res *= n-i; } res *= ifac(r); return res; } // nHr static ModInt repcomb(Int n, Int r) { if(n < 0 || r < 0) return 0; if(n == 0 && r == 0) return 1; return comb(n+r-1, r); } private: static const ModInt (&fac_table())[N] { static ModInt table[N] {}; ASSERT(table[0] == 0); // CALL ONLY ONCE table[0] = 1; FOR(i, 1, N) { table[i] = i * table[i-1]; } return table; } static const ModInt (&ifac_table())[N] { static ModInt table[N] {}; ASSERT(table[0] == 0); // CALL ONLY ONCE table[N-1] = fac(N-1).inv(); for(Int i = N-2; i >= 0; --i) { table[i] = (i+1) * table[i+1]; } return table; } }; template<Int H, Int W> ModInt (&combination_count_table())[H][W] { static_assert(W >= 1 && H >= W); static ModInt dp[H][W] {}; if(dp[0][0] != 1) { REP(i, H) { dp[i][0] = 1; dp[i][i] = 1; } FOR(i, 1, H) FOR(j, 1, i) { dp[i][j] = dp[i-1][j-1] + dp[i-1][j]; } } return dp; } template<Int H, Int W> auto combination_count_func() { static_assert(W >= 1 && H >= W); return FIXMEMO<H,W>([](auto&& self, Int n, Int r) -> ModInt { if(n < r) return 0; if(r == 0) return 1; if(n == r) return 1; return self(n-1,r-1) + self(n-1,r); }); } // 分割数 P(n,k) (n を k 個の正整数の和で表す場合の数) // // 「n を 最大値 k の正整数の和で表す場合の数」でもある。 // 「n を k 個『以下』の正整数の和で表す場合の数」は sum(P(n,i)) (1<=i<=k) // 「n を k 個の『非負整数』の和で表す場合の数」は P(n+k,k) // // P(0,0) = 1 // P(n,0) = 0 // P(0,k) = 0 // n < k のとき P(n,k) = 0 // P(n,1) = 1 // P(n,n) = 1 // // 順序を区別するものは合成(composition)とよばれる。 // 「n を k 個の順序つき正整数列の和で表す場合の数」は Q(n,k) = comb(n-1,k-1) // 「n を k 個の順序つき『非負整数』列の和で表す場合の数」は Q(n+k,k) = comb(n+k-1,k-1) = comb(n+k-1,n) // 「n を順序つき正整数列の和で表す場合の数」は 2^(n-1) template<Int H, Int W> ModInt (&partition_count_table())[H][W] { static_assert(W >= 1 && H >= W); static ModInt dp[H][W] {}; if(dp[0][0] != 1) { REP(j, W) { dp[j][j] = 1; } FOR(i, 2, H) { dp[i][1] = 1; } FOR(i, 3, H) { FOR(j, 2, MIN(i,W)) { dp[i][j] = dp[i-1][j-1] + dp[i-j][j]; } } } return dp; } // 分割数 メモ化再帰版 template<Int H, Int W> auto partition_count_func() { static_assert(W >= 1 && H >= W); return FIXMEMO<H,W>([](auto&& self, Int n, Int k) -> ModInt { if(n < k) return 0; if(n == k) return 1; if(k == 1) return 1; return self(n-1,k-1) + self(n-k,k); }); } // }}} //-------------------------------------------------------------------- void solve() { Int N = RD(); auto A = RD_VEC(N); using Fac = Factorial<101>; ModInt ans = 0; REP(i, N) { ans += Fac::comb(N-1,i) * A[i]; } PRINTLN(ans); } signed main() { Int t = 1; //RD(); LOOP(t) { solve(); } EXIT(); }