結果

問題 No.871 かえるのうた
ユーザー へのくへのく
提出日時 2020-06-25 10:46:52
言語 Rust
(1.77.0)
結果
AC  
実行時間 145 ms / 2,000 ms
コード長 31,321 bytes
コンパイル時間 2,859 ms
コンパイル使用メモリ 186,464 KB
実行使用メモリ 10,384 KB
最終ジャッジ日時 2023-08-20 09:35:16
合計ジャッジ時間 6,540 ms
ジャッジサーバーID
(参考情報)
judge11 / judge12
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,376 KB
testcase_01 AC 1 ms
4,380 KB
testcase_02 AC 1 ms
4,380 KB
testcase_03 AC 1 ms
4,376 KB
testcase_04 AC 1 ms
4,376 KB
testcase_05 AC 1 ms
4,376 KB
testcase_06 AC 1 ms
4,376 KB
testcase_07 AC 1 ms
4,380 KB
testcase_08 AC 3 ms
4,380 KB
testcase_09 AC 3 ms
4,380 KB
testcase_10 AC 1 ms
4,380 KB
testcase_11 AC 1 ms
4,380 KB
testcase_12 AC 13 ms
4,376 KB
testcase_13 AC 4 ms
4,380 KB
testcase_14 AC 104 ms
10,384 KB
testcase_15 AC 105 ms
10,288 KB
testcase_16 AC 145 ms
10,380 KB
testcase_17 AC 95 ms
9,976 KB
testcase_18 AC 17 ms
4,384 KB
testcase_19 AC 108 ms
10,296 KB
testcase_20 AC 10 ms
4,380 KB
testcase_21 AC 45 ms
5,344 KB
testcase_22 AC 1 ms
4,376 KB
testcase_23 AC 1 ms
4,380 KB
testcase_24 AC 1 ms
4,384 KB
testcase_25 AC 3 ms
4,380 KB
testcase_26 AC 8 ms
4,380 KB
testcase_27 AC 10 ms
4,380 KB
testcase_28 AC 1 ms
4,380 KB
testcase_29 AC 36 ms
8,116 KB
testcase_30 AC 86 ms
8,804 KB
testcase_31 AC 3 ms
4,376 KB
testcase_32 AC 78 ms
8,152 KB
testcase_33 AC 77 ms
10,188 KB
testcase_34 AC 19 ms
4,376 KB
testcase_35 AC 45 ms
7,792 KB
testcase_36 AC 64 ms
9,200 KB
testcase_37 AC 53 ms
5,540 KB
testcase_38 AC 129 ms
9,812 KB
testcase_39 AC 117 ms
9,576 KB
testcase_40 AC 57 ms
8,408 KB
testcase_41 AC 1 ms
4,376 KB
testcase_42 AC 49 ms
8,896 KB
testcase_43 AC 1 ms
4,376 KB
testcase_44 AC 1 ms
4,376 KB
testcase_45 AC 2 ms
4,384 KB
testcase_46 AC 1 ms
4,380 KB
testcase_47 AC 2 ms
4,376 KB
testcase_48 AC 1 ms
4,380 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused return value of `std::mem::replace` that must be used
   --> Main.rs:621:13
    |
621 |             std::mem::replace(tree, new_tree);
    |             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    |
    = note: if you don't need the old value, you can just assign the new value directly
    = note: `#[warn(unused_must_use)]` on by default

warning: 1 warning emitted

ソースコード

diff #

#![allow(unused_imports, non_snake_case)]
#![allow(dead_code)]
use crate::scanner::Scanner;
use crate::{arraylist::List, data_structure::treap::TreapSet};
use std::collections::HashMap;
fn main() {
    let mut scan = Scanner::new();
    let n = scan.read::<i32>();
    let k = scan.read::<i32>() - 1;
    let x = scan.readn::<i64>(n);
    let a = scan.readn::<i64>(n);
    let xi = x.enumerate().map(|t| (t.1, t.0)).to::<HashMap<_, _>>();
    let mut set = x.to::<TreapSet<_>>();
    let mut stack = list!();
    let mut cnt = 1;
    stack.push(x[k]);
    set.remove(&x[k]);
    while let Some(z) = stack.pop() {
        let i = xi[&z];
        for key in set.range(z - a[i]..z + a[i] + 1) {
            stack.push(*key);
            cnt += 1;
        }
        set.erase(z - a[i]..z + a[i] + 1);
    }
    println!("{}", cnt);
}
pub mod independent {
    pub mod integer {
        pub trait Int:
            std::ops::Add<Output = Self>
            + std::ops::Sub<Output = Self>
            + std::ops::Mul<Output = Self>
            + std::ops::Div<Output = Self>
            + std::ops::Rem<Output = Self>
            + std::ops::AddAssign
            + std::ops::SubAssign
            + std::ops::MulAssign
            + std::ops::DivAssign
            + std::hash::Hash
            + PartialEq
            + Eq
            + PartialOrd
            + Ord
            + Copy
        {
            fn to_u8(&self) -> u8;
            fn to_u16(&self) -> u16;
            fn to_u32(&self) -> u32;
            fn to_u64(&self) -> u64;
            fn to_u128(&self) -> u128;
            fn to_i8(&self) -> i8;
            fn to_i16(&self) -> i16;
            fn to_i32(&self) -> i32;
            fn to_i64(&self) -> i64;
            fn to_i128(&self) -> i128;
            fn to_usize(&self) -> usize;
            fn to_isize(&self) -> isize;
            fn from_u8(x: u8) -> Self;
            fn from_u16(x: u16) -> Self;
            fn from_u32(x: u32) -> Self;
            fn from_u64(x: u64) -> Self;
            fn from_u128(x: u128) -> Self;
            fn from_i8(x: i8) -> Self;
            fn from_i16(x: i16) -> Self;
            fn from_i32(x: i32) -> Self;
            fn from_i64(x: i64) -> Self;
            fn from_i128(x: i128) -> Self;
            fn from_usize(x: usize) -> Self;
            fn from_isize(x: isize) -> Self;
            fn zero() -> Self;
            fn one() -> Self;
            fn next(&self) -> Self {
                *self + Self::one()
            }
        }
        macro_rules ! impl_integer_functions { ( $ selftpe : ident , $ ( $ tofn : ident , $ fromfn : ident , $ tpe : ident ) ,* ) => { $ ( fn $ tofn ( & self ) -> $ tpe { * self as $ tpe } fn $ fromfn ( x : $ tpe ) -> Self { x as $ selftpe } ) * } ; }
        macro_rules ! impl_integer { ( $ ( $ tpe : ident ) ,* ) => { $ ( impl Int for $ tpe { impl_integer_functions ! ( $ tpe , to_u8 , from_u8 , u8 , to_u16 , from_u16 , u16 , to_u32 , from_u32 , u32 , to_u64 , from_u64 , u64 , to_u128 , from_u128 , u128 , to_i8 , from_i8 , i8 , to_i16 , from_i16 , i16 , to_i32 , from_i32 , i32 , to_i64 , from_i64 , i64 , to_i128 , from_i128 , i128 , to_usize , from_usize , usize , to_isize , from_isize , isize ) ; fn zero ( ) -> Self { 0 } fn one ( ) -> Self { 1 } } ) * } ; }
        impl_integer!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, usize, isize);
    }
    pub mod random {
        use crate::arraylist::List;
        #[derive(Debug, Clone)]
        pub struct Random {
            x: std::num::Wrapping<u64>,
        }
        impl Random {
            pub fn new() -> Random {
                Random {
                    x: std::num::Wrapping(88172645463325252),
                }
            }
            pub fn next(&mut self, n: u64) -> u64 {
                self.x = self.x ^ (self.x << 7);
                self.x = self.x ^ (self.x >> 9);
                self.x.0 % n
            }
            pub fn shuffle<T>(&mut self, arr: &mut List<T>) {
                let n = arr.ilen();
                for i in (0..n - 1).map(|i| n - i) {
                    let j = self.next(i as u64) as i32;
                    arr.swap(i, j);
                }
            }
        }
    }
}
pub mod scanner {
    use crate::arraylist::List;
    use std::io::{stdin, BufReader, Bytes, Read, Stdin};
    use std::str::FromStr;
    macro_rules ! impl_readxn { ( $ name : ident , $ ( $ tpe : ident ) ,+ ) => { pub fn $ name <$ ( $ tpe : FromStr ) ,+> ( & mut self , n : i32 ) -> List < ( $ ( $ tpe ) ,+ ) > { ( 0 .. n ) . map ( | _ | ( $ ( self . read ::<$ tpe > ( ) ) ,+ ) ) . collect ( ) } } ; }
    pub struct Scanner {
        buf: Bytes<BufReader<Stdin>>,
    }
    impl Scanner {
        pub fn new() -> Scanner {
            Scanner {
                buf: BufReader::new(stdin()).bytes(),
            }
        }
        pub fn read_next<T: FromStr>(&mut self) -> Option<T> {
            let token = self
                .buf
                .by_ref()
                .map(|c| c.unwrap() as char)
                .skip_while(|c| c.is_whitespace())
                .take_while(|c| !c.is_whitespace())
                .collect::<String>();
            token.parse::<T>().ok()
        }
        pub fn read<T: FromStr>(&mut self) -> T {
            self.read_next().unwrap()
        }
        pub fn readn<T: FromStr>(&mut self, n: i32) -> List<T> {
            (0..n).map(|_| self.read::<T>()).collect()
        }
        pub fn chars(&mut self) -> List<char> {
            self.read::<String>().chars().collect()
        }
        impl_readxn!(read2n, P, Q);
        impl_readxn!(read3n, P, Q, R);
        impl_readxn!(read4n, P, Q, R, S);
        impl_readxn!(read5n, P, Q, R, S, T);
    }
}
pub mod arraylist {
    use crate::{ext::range::IntRangeBounds, independent::integer::Int};
    use std::fmt::Formatter;
    use std::iter::FromIterator;
    use std::ops::{Index, IndexMut, RangeBounds};
    use std::slice::Iter;
    #[derive(Clone, PartialEq, Eq)]
    pub struct List<T> {
        pub vec: Vec<T>,
    }
    impl<T> List<T> {
        #[inline]
        pub fn new() -> List<T> {
            List { vec: vec![] }
        }
        #[inline]
        pub fn init(init: T, n: i32) -> List<T>
        where
            T: Clone,
        {
            List {
                vec: vec![init; n as usize],
            }
        }
        #[inline]
        pub fn from_vec(vec: Vec<T>) -> List<T> {
            List { vec }
        }
        #[inline]
        pub fn acc<'a, S>(n: i32, mut f: S) -> List<T>
        where
            S: FnMut(i32) -> T + 'a,
        {
            (0..n).map(|i| f(i)).collect()
        }
        #[inline]
        pub fn ilen(&self) -> i32 {
            self.vec.len() as i32
        }
        #[inline]
        pub fn iter(&self) -> Iter<'_, T> {
            self.vec.iter()
        }
        #[inline]
        pub fn push(&mut self, item: T) {
            self.vec.push(item);
        }
        #[inline]
        pub fn sort(&mut self)
        where
            T: Ord,
        {
            self.vec.sort();
        }
        #[inline]
        pub fn reverse(&mut self) {
            self.vec.reverse();
        }
        #[inline]
        pub fn sort_by<F>(&mut self, compare: F)
        where
            F: FnMut(&T, &T) -> std::cmp::Ordering,
        {
            self.vec.sort_by(compare)
        }
        #[inline]
        pub fn sort_by_key<K, F>(&mut self, compare: F)
        where
            F: FnMut(&T) -> K,
            K: Ord,
        {
            self.vec.sort_by_key(compare)
        }
        #[inline]
        pub fn first(&self) -> Option<&T> {
            self.vec.first()
        }
        #[inline]
        pub fn last(&self) -> Option<&T> {
            self.vec.last()
        }
        #[inline]
        pub fn pop(&mut self) -> Option<T> {
            self.vec.pop()
        }
        #[inline]
        pub fn swap(&mut self, i: i32, j: i32) {
            self.vec.swap(i as usize, j as usize);
        }
        #[inline]
        pub fn append(&mut self, mut other: Self) {
            self.vec.append(&mut other.vec);
        }
        #[inline]
        pub fn extend(&mut self, other: impl Iterator<Item = T>) {
            self.vec.extend(other);
        }
        #[inline]
        pub fn mirror(&self) -> std::iter::Cloned<Iter<T>>
        where
            T: Clone,
        {
            self.iter().cloned()
        }
        #[inline]
        pub fn join(&self, sep: &str) -> String
        where
            T: std::fmt::Display,
        {
            self.iter()
                .map(|x| format!("{}", x))
                .collect::<Vec<_>>()
                .join(sep)
        }
        #[inline]
        pub fn map<B, F>(&self, f: F) -> List<B>
        where
            T: Clone,
            F: FnMut(T) -> B,
        {
            self.mirror().map(f).collect()
        }
        #[inline]
        pub fn filter<P>(&self, predicate: P) -> List<T>
        where
            T: Clone,
            P: FnMut(&T) -> bool,
        {
            self.mirror().filter(predicate).collect()
        }
        #[inline]
        pub fn filter_map<B, F>(&self, f: F) -> List<B>
        where
            T: Clone,
            F: FnMut(T) -> Option<B>,
        {
            self.mirror().filter_map(f).collect()
        }
        #[doc = " |acc, x| -> acc"]
        #[inline]
        pub fn fold<B, F>(&self, init: B, f: F) -> B
        where
            T: Clone,
            F: FnMut(B, T) -> B,
        {
            self.mirror().fold(init, f)
        }
        #[inline]
        pub fn any<P>(&self, predicate: P) -> bool
        where
            P: FnMut(&T) -> bool,
        {
            self.iter().any(predicate)
        }
        #[inline]
        pub fn all<P>(&self, predicate: P) -> bool
        where
            P: FnMut(&T) -> bool,
        {
            self.iter().all(predicate)
        }
        #[inline]
        pub fn sum(&self) -> T
        where
            T: Int,
        {
            self.iter().cloned().fold(T::zero(), |acc, x| acc + x)
        }
        #[inline]
        pub fn enumerate(&self) -> List<(i32, T)>
        where
            T: Clone,
        {
            self.mirror()
                .enumerate()
                .map(|p| (p.0 as i32, p.1))
                .collect()
        }
        #[inline]
        pub fn find<P>(&self, mut predicate: P) -> Option<&T>
        where
            P: FnMut(&T) -> bool,
        {
            self.iter().find(|x| predicate(*x))
        }
        #[inline]
        pub fn index_of<P>(&self, mut predicate: P) -> Option<i32>
        where
            P: FnMut(&T) -> bool,
        {
            self.iter()
                .enumerate()
                .find(|&(_i, x)| predicate(x))
                .map(|p| p.0 as i32)
        }
        #[inline]
        pub fn to<B: FromIterator<T>>(&self) -> B
        where
            T: Clone,
        {
            self.mirror().collect()
        }
        #[inline]
        pub fn min(&self) -> Option<&T>
        where
            T: Ord,
        {
            self.iter().min()
        }
        #[inline]
        pub fn max(&self) -> Option<&T>
        where
            T: Ord,
        {
            self.iter().max()
        }
        #[inline]
        pub fn argmin(&self) -> Option<i32>
        where
            T: Ord,
        {
            let item = self.iter().min()?;
            self.iter()
                .enumerate()
                .find(|p| p.1 == item)
                .map(|p| p.0 as i32)
        }
        #[inline]
        pub fn argmax(&self) -> Option<i32>
        where
            T: Ord,
        {
            let item = self.iter().max()?;
            self.iter()
                .enumerate()
                .find(|p| p.1 == item)
                .map(|p| p.0 as i32)
        }
        #[inline]
        pub fn part<U>(&self, range: U) -> List<T>
        where
            T: Clone,
            U: RangeBounds<i32>,
        {
            List::from_vec(
                self.vec[range.lower_bound(0) as usize..range.upper_bound(self.ilen()) as usize]
                    .to_vec(),
            )
        }
        #[inline]
        pub fn first_exn(&self) -> &T {
            self.first().unwrap()
        }
        #[inline]
        pub fn last_exn(&self) -> &T {
            self.last().unwrap()
        }
        #[inline]
        pub fn pop_exn(&mut self) -> T {
            self.pop().unwrap()
        }
        #[inline]
        pub fn min_exn(&self) -> &T
        where
            T: Ord,
        {
            self.min().unwrap()
        }
        #[inline]
        pub fn max_exn(&self) -> &T
        where
            T: Ord,
        {
            self.max().unwrap()
        }
        #[inline]
        pub fn argmin_exn(&self) -> i32
        where
            T: Ord,
        {
            self.argmin().unwrap()
        }
        #[inline]
        pub fn argmax_exn(&self) -> i32
        where
            T: Ord,
        {
            self.argmax().unwrap()
        }
        #[inline]
        pub fn find_exn<P>(&self, predicate: P) -> &T
        where
            P: FnMut(&T) -> bool,
        {
            self.find(predicate).unwrap()
        }
        #[inline]
        pub fn index_of_exn<P>(&self, predicate: P) -> i32
        where
            P: FnMut(&T) -> bool,
        {
            self.index_of(predicate).unwrap()
        }
    }
    impl<T> std::ops::BitXorAssign<T> for List<T> {
        #[inline]
        fn bitxor_assign(&mut self, rhs: T) {
            self.push(rhs);
        }
    }
    impl<T> Index<i32> for List<T> {
        type Output = T;
        #[inline]
        fn index(&self, index: i32) -> &Self::Output {
            if cfg!(debug_assertions) {
                self.vec.index(index as usize)
            } else {
                unsafe { self.vec.get_unchecked(index as usize) }
            }
        }
    }
    impl<T> IndexMut<i32> for List<T> {
        #[inline]
        fn index_mut(&mut self, index: i32) -> &mut Self::Output {
            if cfg!(debug_assertions) {
                self.vec.index_mut(index as usize)
            } else {
                unsafe { self.vec.get_unchecked_mut(index as usize) }
            }
        }
    }
    impl<T> FromIterator<T> for List<T> {
        fn from_iter<U: IntoIterator<Item = T>>(iter: U) -> Self {
            List {
                vec: iter.into_iter().collect(),
            }
        }
    }
    impl<T> IntoIterator for List<T> {
        type Item = T;
        type IntoIter = std::vec::IntoIter<T>;
        fn into_iter(self) -> std::vec::IntoIter<T> {
            self.vec.into_iter()
        }
    }
    impl<'a, T> IntoIterator for &'a List<T> {
        type Item = &'a T;
        type IntoIter = Iter<'a, T>;
        fn into_iter(self) -> Iter<'a, T> {
            self.vec.iter()
        }
    }
    impl<T: std::fmt::Display> std::fmt::Display for List<T> {
        fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
            write!(
                f,
                "{}",
                self.iter()
                    .map(|x| format!("{}", x))
                    .collect::<Vec<_>>()
                    .join(" ")
            )
        }
    }
    impl<T: std::fmt::Debug> std::fmt::Debug for List<T> {
        fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
            write!(
                f,
                "[{}]",
                self.iter()
                    .map(|x| format!("{:?}", x))
                    .collect::<Vec<_>>()
                    .join(", ")
            )
        }
    }
    impl<T> From<Vec<T>> for List<T> {
        fn from(vec: Vec<T>) -> Self {
            Self::from_vec(vec)
        }
    }
    impl<T: Clone> From<&[T]> for List<T> {
        fn from(slice: &[T]) -> Self {
            slice.iter().cloned().collect()
        }
    }
    #[macro_export]
    macro_rules ! list { ( ) => { $ crate :: arraylist :: List :: new ( ) } ; ( $ ( $ v : expr ) ,+ $ ( , ) ? ) => { $ crate :: arraylist :: List :: from_vec ( [ $ ( $ v ) ,+ ] . to_vec ( ) ) } ; ( $ v : expr ; $ a : expr ) => { $ crate :: arraylist :: List :: init ( $ v , $ a ) } ; ( $ v : expr ; $ a : expr ; $ ( $ rest : expr ) ;+ ) => { $ crate :: arraylist :: List :: init ( list ! ( $ v ; $ ( $ rest ) ;+ ) , $ a ) } ; }
}
pub mod data_structure {
    pub mod treap {
        use crate::independent::random::Random;
        use std::cmp::Ordering;
        use std::iter::FromIterator;
        use std::ops::Range;
        #[derive(Debug, Clone)]
        struct Node<T, U> {
            key: T,
            value: U,
            priority: u64,
            l: Link<T, U>,
            r: Link<T, U>,
        }
        impl<T, U> Node<T, U> {
            fn new(key: T, value: U, priority: u64) -> Self {
                Node {
                    key,
                    value,
                    priority,
                    l: None,
                    r: None,
                }
            }
        }
        type NonNull<T, U> = Box<Node<T, U>>;
        type Link<T, U> = Option<NonNull<T, U>>;
        fn split<T: Ord, U>(now: Link<T, U>, key: &T) -> (Link<T, U>, Link<T, U>) {
            match now {
                None => (None, None),
                Some(node) => {
                    let mut node = node;
                    if key <= &node.key {
                        let (nl, nr) = split(node.l.take(), key);
                        node.l = nr;
                        (nl, Some(node))
                    } else {
                        let (nl, nr) = split(node.r.take(), key);
                        node.r = nl;
                        (Some(node), nr)
                    }
                }
            }
        }
        fn merge<T, U>(l_tree: &mut Link<T, U>, r_tree: Link<T, U>) {
            match (l_tree.take(), r_tree) {
                (Some(mut l_node), Some(mut r_node)) => {
                    if l_node.priority > r_node.priority {
                        merge(&mut l_node.r, Some(r_node));
                        *l_tree = Some(l_node);
                    } else {
                        let mut new_tree = Some(l_node);
                        merge(&mut new_tree, r_node.l.take());
                        r_node.l = new_tree;
                        *l_tree = Some(r_node);
                    }
                }
                (new_tree, None) | (None, new_tree) => *l_tree = new_tree,
            }
        }
        fn insert<T: Ord, U>(tree: &mut Link<T, U>, new_node: Node<T, U>) {
            let (mut left, right) = split(tree.take(), &new_node.key);
            merge(&mut left, Some(Box::new(new_node)));
            merge(&mut left, right);
            *tree = left.take();
        }
        fn remove<T: Ord, U>(tree: &mut Link<T, U>, key: &T) {
            let mut new_tree;
            match tree {
                Some(ref mut node) => match key.cmp(&node.key) {
                    Ordering::Less => {
                        remove(&mut node.l, key);
                        return;
                    }
                    Ordering::Greater => {
                        remove(&mut node.r, key);
                        return;
                    }
                    Ordering::Equal => {
                        new_tree = node.l.take();
                        merge(&mut new_tree, node.r.take());
                    }
                },
                None => return,
            }
            std::mem::replace(tree, new_tree);
        }
        fn get<'a, T: Ord, U>(tree: &'a Link<T, U>, key: &T) -> Option<(&'a T, &'a U)> {
            tree.as_ref().and_then(|node| match key.cmp(&node.key) {
                Ordering::Less => get(&node.l, key),
                Ordering::Greater => get(&node.r, key),
                Ordering::Equal => Some((&node.key, &node.value)),
            })
        }
        fn next<'a, T: Ord, U>(
            tree: &'a Link<T, U>,
            key: &T,
            inclusive: bool,
        ) -> Option<(&'a T, &'a U)> {
            tree.as_ref().and_then(|node| match key.cmp(&node.key) {
                Ordering::Greater => next(&node.r, key, inclusive),
                Ordering::Less => match next(&node.l, key, inclusive) {
                    None => Some((&node.key, &node.value)),
                    res => res,
                },
                Ordering::Equal => {
                    if inclusive {
                        Some((&node.key, &node.value))
                    } else {
                        next(&node.r, key, inclusive)
                    }
                }
            })
        }
        fn prev<'a, T: Ord, U>(
            tree: &'a Link<T, U>,
            key: &T,
            inclusive: bool,
        ) -> Option<(&'a T, &'a U)> {
            tree.as_ref().and_then(|node| match key.cmp(&node.key) {
                Ordering::Less => prev(&node.l, key, inclusive),
                Ordering::Greater => match prev(&node.r, key, inclusive) {
                    None => Some((&node.key, &node.value)),
                    res => res,
                },
                Ordering::Equal => {
                    if inclusive {
                        Some((&node.key, &node.value))
                    } else {
                        prev(&node.l, key, inclusive)
                    }
                }
            })
        }
        fn min<T: Ord, U>(tree: &Link<T, U>) -> Option<(&T, &U)> {
            tree.as_ref().and_then(|node| {
                let mut curr = node;
                while let Some(ref left_node) = curr.l {
                    curr = left_node;
                }
                Some((&curr.key, &curr.value))
            })
        }
        fn max<T: Ord, U>(tree: &Link<T, U>) -> Option<(&T, &U)> {
            tree.as_ref().and_then(|node| {
                let mut curr = node;
                while let Some(ref right_node) = curr.r {
                    curr = right_node;
                }
                Some((&curr.key, &curr.value))
            })
        }
        fn keyof<'a, T, U>(tpl: Option<(&'a T, &U)>) -> Option<&'a T> {
            tpl.map(|t| t.0)
        }
        fn identity<T>(arg: T) -> T {
            arg
        }
        #[derive(Debug, Clone)]
        pub struct TreapMap<T, U> {
            tree: Link<T, U>,
            rng: Random,
        }
        #[derive(Debug, Clone)]
        pub struct TreapSet<T> {
            tree: Link<T, ()>,
            rng: Random,
        }
        macro_rules ! treap_impl { ( $ rt : ty , $ mapfn : ident ) => { pub fn new ( ) -> Self { Self { tree : None , rng : Random :: new ( ) } } pub fn remove ( & mut self , key : & T ) { let tree = & mut self . tree ; remove ( tree , key ) ; } pub fn erase ( & mut self , range : Range < T > ) { let right = self . split_off ( & range . end ) ; self . split_off ( & range . start ) ; self . merge ( right ) ; } pub fn contains ( & self , key : & T ) -> bool { let tree = & self . tree ; get ( tree , key ) . is_some ( ) } pub fn prev ( & self , key : & T , inclusive : bool ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( prev ( tree , key , inclusive ) ) } pub fn next ( & self , key : & T , inclusive : bool ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( next ( tree , key , inclusive ) ) } pub fn min ( & self ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( min ( tree ) ) } pub fn max ( & self ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( max ( tree ) ) } pub fn min_exn ( & self ) -> $ rt { self . min ( ) . unwrap ( ) } pub fn max_exn ( & self ) -> $ rt { self . max ( ) . unwrap ( ) } # [ doc = " self = (∞, key) & return = [key, ∞)" ] pub fn split_off ( & mut self , key : & T ) -> Self { let tree = & mut self . tree ; let ( mut left , right ) = split ( tree . take ( ) , key ) ; * tree = left . take ( ) ; Self { tree : right , rng : Random :: new ( ) } } pub fn merge ( & mut self , right : Self ) { let tree = & mut self . tree ; merge ( tree , right . tree ) } pub fn ilen ( & self ) -> i32 { self . iter ( ) . count ( ) as i32 } pub fn is_empty ( & self ) -> bool { self . min ( ) . is_none ( ) } pub fn get ( & self , key : & T ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( get ( tree , key ) ) } } ; }
        impl<T: Ord> TreapSet<T> {
            treap_impl! { & T , keyof }
        }
        impl<T: Ord, U> TreapMap<T, U> {
            treap_impl! { ( & T , & U ) , identity }
        }
        impl<T: Ord> TreapSet<T> {
            pub fn insert(&mut self, key: T) {
                let tree = &mut self.tree;
                let new_node = Node::new(key, (), self.rng.next(std::u64::MAX));
                insert(tree, new_node);
            }
            pub fn iter(&self) -> impl Iterator<Item = &T> {
                (0..).scan(
                    (&self.tree, Vec::<&Node<T, ()>>::new()),
                    |(current, stack), _| {
                        while let Some(ref node) = current {
                            *current = &node.l;
                            stack.push(node);
                        }
                        stack.pop().map(|node| {
                            let Node { ref key, ref r, .. } = node;
                            *current = r;
                            key
                        })
                    },
                )
            }
            pub fn range(&self, range: Range<T>) -> impl Iterator<Item = &T> {
                (0..).scan(self.next(&range.start, true), move |state, _| {
                    if let &mut Some(t) = state {
                        if t >= &range.end {
                            return None;
                        }
                        *state = self.next(t, false);
                        Some(t)
                    } else {
                        return None;
                    }
                })
            }
        }
        impl<T: Ord, U> TreapMap<T, U> {
            pub fn insert(&mut self, key: T, value: U) {
                let tree = &mut self.tree;
                let new_node = Node::new(key, value, self.rng.next(std::u64::MAX));
                insert(tree, new_node);
            }
            pub fn iter(&self) -> impl Iterator<Item = (&T, &U)> {
                (0..).scan(
                    (&self.tree, Vec::<&Node<T, U>>::new()),
                    |(current, stack), _| {
                        while let Some(ref node) = current {
                            *current = &node.l;
                            stack.push(node);
                        }
                        stack.pop().map(|node| {
                            let Node {
                                ref key,
                                ref value,
                                ref r,
                                ..
                            } = node;
                            *current = r;
                            (key, value)
                        })
                    },
                )
            }
            pub fn range(&self, range: Range<T>) -> impl Iterator<Item = (&T, &U)> {
                (0..).scan(self.next(&range.start, true), move |state, _| {
                    if let &mut Some(t) = state {
                        if t.0 >= &range.end {
                            return None;
                        }
                        *state = self.next(t.0, false);
                        Some(t)
                    } else {
                        return None;
                    }
                })
            }
        }
        impl<T: Ord> FromIterator<T> for TreapSet<T> {
            fn from_iter<V: IntoIterator<Item = T>>(iter: V) -> Self {
                let mut set = TreapSet::new();
                for i in iter {
                    set.insert(i);
                }
                set
            }
        }
        impl<T: Ord, U> FromIterator<(T, U)> for TreapMap<T, U> {
            fn from_iter<V: IntoIterator<Item = (T, U)>>(iter: V) -> Self {
                let mut set = TreapMap::new();
                for (i, j) in iter {
                    set.insert(i, j);
                }
                set
            }
        }
    }
}
pub mod ext {
    pub mod range {
        use crate::independent::integer::Int;
        use std::cmp::{max, min};
        use std::ops::{Bound, Range, RangeBounds};
        pub trait IntRangeBounds<U: Int>: RangeBounds<U> {
            fn lbopt(&self) -> Option<U> {
                match self.start_bound() {
                    Bound::Included(x) => Some(*x),
                    Bound::Excluded(x) => Some(*x + U::one()),
                    Bound::Unbounded => None,
                }
            }
            fn ubopt(&self) -> Option<U> {
                match self.end_bound() {
                    Bound::Included(x) => Some(*x + U::one()),
                    Bound::Excluded(x) => Some(*x),
                    Bound::Unbounded => None,
                }
            }
            #[doc = " inclusive"]
            fn lower_bound(&self, limit: U) -> U {
                self.lbopt().map_or(limit, |x| max(limit, x))
            }
            #[doc = " exclusive"]
            fn upper_bound(&self, limit: U) -> U {
                self.ubopt().map_or(limit, |x| min(limit, x))
            }
            fn to_harfopen(&self, lb: U, ub: U) -> Range<U> {
                self.lower_bound(lb)..self.upper_bound(ub)
            }
            fn width(&self) -> U {
                if self.empty() {
                    U::zero()
                } else {
                    self.ubopt().unwrap() - self.lbopt().unwrap()
                }
            }
            fn empty(&self) -> bool {
                self.lbopt().is_none()
                    || self.ubopt().is_none()
                    || !(self.lbopt().unwrap() < self.ubopt().unwrap())
            }
            fn contain_range(&self, inner: &Self) -> bool {
                (match (self.lbopt(), inner.lbopt()) {
                    (Some(a), Some(b)) => a <= b,
                    (None, _) => true,
                    (Some(_), None) => false,
                }) && (match (inner.ubopt(), self.ubopt()) {
                    (Some(a), Some(b)) => a <= b,
                    (_, None) => true,
                    (None, Some(_)) => false,
                })
            }
            fn separate_range(&self, other: &Self) -> bool {
                if let (Some(a), Some(b)) = (self.ubopt(), other.lbopt()) {
                    a <= b
                } else if let (Some(a), Some(b)) = (other.ubopt(), self.lbopt()) {
                    a <= b
                } else {
                    false
                }
            }
            fn overlap(&self, other: &Self) -> Range<U> {
                let left = if let (Some(a), Some(b)) = (self.lbopt(), other.lbopt()) {
                    max(a, b)
                } else {
                    self.lbopt().or(other.lbopt()).unwrap()
                };
                let right = if let (Some(a), Some(b)) = (self.ubopt(), other.ubopt()) {
                    min(a, b)
                } else {
                    self.ubopt().or(other.ubopt()).unwrap()
                };
                left..right
            }
        }
        impl<T: ?Sized, U: Int> IntRangeBounds<U> for T where T: RangeBounds<U> {}
    }
}

0