結果
問題 | No.871 かえるのうた |
ユーザー | へのく |
提出日時 | 2020-06-25 10:46:52 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 85 ms / 2,000 ms |
コード長 | 31,321 bytes |
コンパイル時間 | 14,245 ms |
コンパイル使用メモリ | 382,164 KB |
実行使用メモリ | 10,396 KB |
最終ジャッジ日時 | 2024-11-30 11:02:27 |
合計ジャッジ時間 | 17,061 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,820 KB |
testcase_02 | AC | 1 ms
6,820 KB |
testcase_03 | AC | 1 ms
6,816 KB |
testcase_04 | AC | 1 ms
6,816 KB |
testcase_05 | AC | 1 ms
6,820 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 3 ms
6,816 KB |
testcase_09 | AC | 4 ms
6,820 KB |
testcase_10 | AC | 2 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 21 ms
6,816 KB |
testcase_13 | AC | 4 ms
6,820 KB |
testcase_14 | AC | 85 ms
10,396 KB |
testcase_15 | AC | 70 ms
10,256 KB |
testcase_16 | AC | 80 ms
10,392 KB |
testcase_17 | AC | 51 ms
9,912 KB |
testcase_18 | AC | 11 ms
6,820 KB |
testcase_19 | AC | 59 ms
10,264 KB |
testcase_20 | AC | 6 ms
6,816 KB |
testcase_21 | AC | 24 ms
6,816 KB |
testcase_22 | AC | 1 ms
6,816 KB |
testcase_23 | AC | 1 ms
6,820 KB |
testcase_24 | AC | 1 ms
6,820 KB |
testcase_25 | AC | 2 ms
6,816 KB |
testcase_26 | AC | 7 ms
6,820 KB |
testcase_27 | AC | 7 ms
6,820 KB |
testcase_28 | AC | 1 ms
6,820 KB |
testcase_29 | AC | 26 ms
8,188 KB |
testcase_30 | AC | 56 ms
8,720 KB |
testcase_31 | AC | 2 ms
6,820 KB |
testcase_32 | AC | 53 ms
8,220 KB |
testcase_33 | AC | 46 ms
10,284 KB |
testcase_34 | AC | 12 ms
6,816 KB |
testcase_35 | AC | 29 ms
7,880 KB |
testcase_36 | AC | 38 ms
9,232 KB |
testcase_37 | AC | 34 ms
6,816 KB |
testcase_38 | AC | 85 ms
9,912 KB |
testcase_39 | AC | 73 ms
9,600 KB |
testcase_40 | AC | 42 ms
8,240 KB |
testcase_41 | AC | 1 ms
6,816 KB |
testcase_42 | AC | 35 ms
8,880 KB |
testcase_43 | AC | 1 ms
6,820 KB |
testcase_44 | AC | 1 ms
6,820 KB |
testcase_45 | AC | 2 ms
6,820 KB |
testcase_46 | AC | 1 ms
6,820 KB |
testcase_47 | AC | 1 ms
6,820 KB |
testcase_48 | AC | 1 ms
6,820 KB |
コンパイルメッセージ
warning: unused return value of `std::mem::replace` that must be used --> src/main.rs:621:13 | 621 | std::mem::replace(tree, new_tree); | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | = note: if you don't need the old value, you can just assign the new value directly = note: `#[warn(unused_must_use)]` on by default help: use `let _ = ...` to ignore the resulting value | 621 | let _ = std::mem::replace(tree, new_tree); | +++++++
ソースコード
#![allow(unused_imports, non_snake_case)] #![allow(dead_code)] use crate::scanner::Scanner; use crate::{arraylist::List, data_structure::treap::TreapSet}; use std::collections::HashMap; fn main() { let mut scan = Scanner::new(); let n = scan.read::<i32>(); let k = scan.read::<i32>() - 1; let x = scan.readn::<i64>(n); let a = scan.readn::<i64>(n); let xi = x.enumerate().map(|t| (t.1, t.0)).to::<HashMap<_, _>>(); let mut set = x.to::<TreapSet<_>>(); let mut stack = list!(); let mut cnt = 1; stack.push(x[k]); set.remove(&x[k]); while let Some(z) = stack.pop() { let i = xi[&z]; for key in set.range(z - a[i]..z + a[i] + 1) { stack.push(*key); cnt += 1; } set.erase(z - a[i]..z + a[i] + 1); } println!("{}", cnt); } pub mod independent { pub mod integer { pub trait Int: std::ops::Add<Output = Self> + std::ops::Sub<Output = Self> + std::ops::Mul<Output = Self> + std::ops::Div<Output = Self> + std::ops::Rem<Output = Self> + std::ops::AddAssign + std::ops::SubAssign + std::ops::MulAssign + std::ops::DivAssign + std::hash::Hash + PartialEq + Eq + PartialOrd + Ord + Copy { fn to_u8(&self) -> u8; fn to_u16(&self) -> u16; fn to_u32(&self) -> u32; fn to_u64(&self) -> u64; fn to_u128(&self) -> u128; fn to_i8(&self) -> i8; fn to_i16(&self) -> i16; fn to_i32(&self) -> i32; fn to_i64(&self) -> i64; fn to_i128(&self) -> i128; fn to_usize(&self) -> usize; fn to_isize(&self) -> isize; fn from_u8(x: u8) -> Self; fn from_u16(x: u16) -> Self; fn from_u32(x: u32) -> Self; fn from_u64(x: u64) -> Self; fn from_u128(x: u128) -> Self; fn from_i8(x: i8) -> Self; fn from_i16(x: i16) -> Self; fn from_i32(x: i32) -> Self; fn from_i64(x: i64) -> Self; fn from_i128(x: i128) -> Self; fn from_usize(x: usize) -> Self; fn from_isize(x: isize) -> Self; fn zero() -> Self; fn one() -> Self; fn next(&self) -> Self { *self + Self::one() } } macro_rules ! impl_integer_functions { ( $ selftpe : ident , $ ( $ tofn : ident , $ fromfn : ident , $ tpe : ident ) ,* ) => { $ ( fn $ tofn ( & self ) -> $ tpe { * self as $ tpe } fn $ fromfn ( x : $ tpe ) -> Self { x as $ selftpe } ) * } ; } macro_rules ! impl_integer { ( $ ( $ tpe : ident ) ,* ) => { $ ( impl Int for $ tpe { impl_integer_functions ! ( $ tpe , to_u8 , from_u8 , u8 , to_u16 , from_u16 , u16 , to_u32 , from_u32 , u32 , to_u64 , from_u64 , u64 , to_u128 , from_u128 , u128 , to_i8 , from_i8 , i8 , to_i16 , from_i16 , i16 , to_i32 , from_i32 , i32 , to_i64 , from_i64 , i64 , to_i128 , from_i128 , i128 , to_usize , from_usize , usize , to_isize , from_isize , isize ) ; fn zero ( ) -> Self { 0 } fn one ( ) -> Self { 1 } } ) * } ; } impl_integer!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, usize, isize); } pub mod random { use crate::arraylist::List; #[derive(Debug, Clone)] pub struct Random { x: std::num::Wrapping<u64>, } impl Random { pub fn new() -> Random { Random { x: std::num::Wrapping(88172645463325252), } } pub fn next(&mut self, n: u64) -> u64 { self.x = self.x ^ (self.x << 7); self.x = self.x ^ (self.x >> 9); self.x.0 % n } pub fn shuffle<T>(&mut self, arr: &mut List<T>) { let n = arr.ilen(); for i in (0..n - 1).map(|i| n - i) { let j = self.next(i as u64) as i32; arr.swap(i, j); } } } } } pub mod scanner { use crate::arraylist::List; use std::io::{stdin, BufReader, Bytes, Read, Stdin}; use std::str::FromStr; macro_rules ! impl_readxn { ( $ name : ident , $ ( $ tpe : ident ) ,+ ) => { pub fn $ name <$ ( $ tpe : FromStr ) ,+> ( & mut self , n : i32 ) -> List < ( $ ( $ tpe ) ,+ ) > { ( 0 .. n ) . map ( | _ | ( $ ( self . read ::<$ tpe > ( ) ) ,+ ) ) . collect ( ) } } ; } pub struct Scanner { buf: Bytes<BufReader<Stdin>>, } impl Scanner { pub fn new() -> Scanner { Scanner { buf: BufReader::new(stdin()).bytes(), } } pub fn read_next<T: FromStr>(&mut self) -> Option<T> { let token = self .buf .by_ref() .map(|c| c.unwrap() as char) .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect::<String>(); token.parse::<T>().ok() } pub fn read<T: FromStr>(&mut self) -> T { self.read_next().unwrap() } pub fn readn<T: FromStr>(&mut self, n: i32) -> List<T> { (0..n).map(|_| self.read::<T>()).collect() } pub fn chars(&mut self) -> List<char> { self.read::<String>().chars().collect() } impl_readxn!(read2n, P, Q); impl_readxn!(read3n, P, Q, R); impl_readxn!(read4n, P, Q, R, S); impl_readxn!(read5n, P, Q, R, S, T); } } pub mod arraylist { use crate::{ext::range::IntRangeBounds, independent::integer::Int}; use std::fmt::Formatter; use std::iter::FromIterator; use std::ops::{Index, IndexMut, RangeBounds}; use std::slice::Iter; #[derive(Clone, PartialEq, Eq)] pub struct List<T> { pub vec: Vec<T>, } impl<T> List<T> { #[inline] pub fn new() -> List<T> { List { vec: vec![] } } #[inline] pub fn init(init: T, n: i32) -> List<T> where T: Clone, { List { vec: vec![init; n as usize], } } #[inline] pub fn from_vec(vec: Vec<T>) -> List<T> { List { vec } } #[inline] pub fn acc<'a, S>(n: i32, mut f: S) -> List<T> where S: FnMut(i32) -> T + 'a, { (0..n).map(|i| f(i)).collect() } #[inline] pub fn ilen(&self) -> i32 { self.vec.len() as i32 } #[inline] pub fn iter(&self) -> Iter<'_, T> { self.vec.iter() } #[inline] pub fn push(&mut self, item: T) { self.vec.push(item); } #[inline] pub fn sort(&mut self) where T: Ord, { self.vec.sort(); } #[inline] pub fn reverse(&mut self) { self.vec.reverse(); } #[inline] pub fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> std::cmp::Ordering, { self.vec.sort_by(compare) } #[inline] pub fn sort_by_key<K, F>(&mut self, compare: F) where F: FnMut(&T) -> K, K: Ord, { self.vec.sort_by_key(compare) } #[inline] pub fn first(&self) -> Option<&T> { self.vec.first() } #[inline] pub fn last(&self) -> Option<&T> { self.vec.last() } #[inline] pub fn pop(&mut self) -> Option<T> { self.vec.pop() } #[inline] pub fn swap(&mut self, i: i32, j: i32) { self.vec.swap(i as usize, j as usize); } #[inline] pub fn append(&mut self, mut other: Self) { self.vec.append(&mut other.vec); } #[inline] pub fn extend(&mut self, other: impl Iterator<Item = T>) { self.vec.extend(other); } #[inline] pub fn mirror(&self) -> std::iter::Cloned<Iter<T>> where T: Clone, { self.iter().cloned() } #[inline] pub fn join(&self, sep: &str) -> String where T: std::fmt::Display, { self.iter() .map(|x| format!("{}", x)) .collect::<Vec<_>>() .join(sep) } #[inline] pub fn map<B, F>(&self, f: F) -> List<B> where T: Clone, F: FnMut(T) -> B, { self.mirror().map(f).collect() } #[inline] pub fn filter<P>(&self, predicate: P) -> List<T> where T: Clone, P: FnMut(&T) -> bool, { self.mirror().filter(predicate).collect() } #[inline] pub fn filter_map<B, F>(&self, f: F) -> List<B> where T: Clone, F: FnMut(T) -> Option<B>, { self.mirror().filter_map(f).collect() } #[doc = " |acc, x| -> acc"] #[inline] pub fn fold<B, F>(&self, init: B, f: F) -> B where T: Clone, F: FnMut(B, T) -> B, { self.mirror().fold(init, f) } #[inline] pub fn any<P>(&self, predicate: P) -> bool where P: FnMut(&T) -> bool, { self.iter().any(predicate) } #[inline] pub fn all<P>(&self, predicate: P) -> bool where P: FnMut(&T) -> bool, { self.iter().all(predicate) } #[inline] pub fn sum(&self) -> T where T: Int, { self.iter().cloned().fold(T::zero(), |acc, x| acc + x) } #[inline] pub fn enumerate(&self) -> List<(i32, T)> where T: Clone, { self.mirror() .enumerate() .map(|p| (p.0 as i32, p.1)) .collect() } #[inline] pub fn find<P>(&self, mut predicate: P) -> Option<&T> where P: FnMut(&T) -> bool, { self.iter().find(|x| predicate(*x)) } #[inline] pub fn index_of<P>(&self, mut predicate: P) -> Option<i32> where P: FnMut(&T) -> bool, { self.iter() .enumerate() .find(|&(_i, x)| predicate(x)) .map(|p| p.0 as i32) } #[inline] pub fn to<B: FromIterator<T>>(&self) -> B where T: Clone, { self.mirror().collect() } #[inline] pub fn min(&self) -> Option<&T> where T: Ord, { self.iter().min() } #[inline] pub fn max(&self) -> Option<&T> where T: Ord, { self.iter().max() } #[inline] pub fn argmin(&self) -> Option<i32> where T: Ord, { let item = self.iter().min()?; self.iter() .enumerate() .find(|p| p.1 == item) .map(|p| p.0 as i32) } #[inline] pub fn argmax(&self) -> Option<i32> where T: Ord, { let item = self.iter().max()?; self.iter() .enumerate() .find(|p| p.1 == item) .map(|p| p.0 as i32) } #[inline] pub fn part<U>(&self, range: U) -> List<T> where T: Clone, U: RangeBounds<i32>, { List::from_vec( self.vec[range.lower_bound(0) as usize..range.upper_bound(self.ilen()) as usize] .to_vec(), ) } #[inline] pub fn first_exn(&self) -> &T { self.first().unwrap() } #[inline] pub fn last_exn(&self) -> &T { self.last().unwrap() } #[inline] pub fn pop_exn(&mut self) -> T { self.pop().unwrap() } #[inline] pub fn min_exn(&self) -> &T where T: Ord, { self.min().unwrap() } #[inline] pub fn max_exn(&self) -> &T where T: Ord, { self.max().unwrap() } #[inline] pub fn argmin_exn(&self) -> i32 where T: Ord, { self.argmin().unwrap() } #[inline] pub fn argmax_exn(&self) -> i32 where T: Ord, { self.argmax().unwrap() } #[inline] pub fn find_exn<P>(&self, predicate: P) -> &T where P: FnMut(&T) -> bool, { self.find(predicate).unwrap() } #[inline] pub fn index_of_exn<P>(&self, predicate: P) -> i32 where P: FnMut(&T) -> bool, { self.index_of(predicate).unwrap() } } impl<T> std::ops::BitXorAssign<T> for List<T> { #[inline] fn bitxor_assign(&mut self, rhs: T) { self.push(rhs); } } impl<T> Index<i32> for List<T> { type Output = T; #[inline] fn index(&self, index: i32) -> &Self::Output { if cfg!(debug_assertions) { self.vec.index(index as usize) } else { unsafe { self.vec.get_unchecked(index as usize) } } } } impl<T> IndexMut<i32> for List<T> { #[inline] fn index_mut(&mut self, index: i32) -> &mut Self::Output { if cfg!(debug_assertions) { self.vec.index_mut(index as usize) } else { unsafe { self.vec.get_unchecked_mut(index as usize) } } } } impl<T> FromIterator<T> for List<T> { fn from_iter<U: IntoIterator<Item = T>>(iter: U) -> Self { List { vec: iter.into_iter().collect(), } } } impl<T> IntoIterator for List<T> { type Item = T; type IntoIter = std::vec::IntoIter<T>; fn into_iter(self) -> std::vec::IntoIter<T> { self.vec.into_iter() } } impl<'a, T> IntoIterator for &'a List<T> { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.vec.iter() } } impl<T: std::fmt::Display> std::fmt::Display for List<T> { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!( f, "{}", self.iter() .map(|x| format!("{}", x)) .collect::<Vec<_>>() .join(" ") ) } } impl<T: std::fmt::Debug> std::fmt::Debug for List<T> { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { write!( f, "[{}]", self.iter() .map(|x| format!("{:?}", x)) .collect::<Vec<_>>() .join(", ") ) } } impl<T> From<Vec<T>> for List<T> { fn from(vec: Vec<T>) -> Self { Self::from_vec(vec) } } impl<T: Clone> From<&[T]> for List<T> { fn from(slice: &[T]) -> Self { slice.iter().cloned().collect() } } #[macro_export] macro_rules ! list { ( ) => { $ crate :: arraylist :: List :: new ( ) } ; ( $ ( $ v : expr ) ,+ $ ( , ) ? ) => { $ crate :: arraylist :: List :: from_vec ( [ $ ( $ v ) ,+ ] . to_vec ( ) ) } ; ( $ v : expr ; $ a : expr ) => { $ crate :: arraylist :: List :: init ( $ v , $ a ) } ; ( $ v : expr ; $ a : expr ; $ ( $ rest : expr ) ;+ ) => { $ crate :: arraylist :: List :: init ( list ! ( $ v ; $ ( $ rest ) ;+ ) , $ a ) } ; } } pub mod data_structure { pub mod treap { use crate::independent::random::Random; use std::cmp::Ordering; use std::iter::FromIterator; use std::ops::Range; #[derive(Debug, Clone)] struct Node<T, U> { key: T, value: U, priority: u64, l: Link<T, U>, r: Link<T, U>, } impl<T, U> Node<T, U> { fn new(key: T, value: U, priority: u64) -> Self { Node { key, value, priority, l: None, r: None, } } } type NonNull<T, U> = Box<Node<T, U>>; type Link<T, U> = Option<NonNull<T, U>>; fn split<T: Ord, U>(now: Link<T, U>, key: &T) -> (Link<T, U>, Link<T, U>) { match now { None => (None, None), Some(node) => { let mut node = node; if key <= &node.key { let (nl, nr) = split(node.l.take(), key); node.l = nr; (nl, Some(node)) } else { let (nl, nr) = split(node.r.take(), key); node.r = nl; (Some(node), nr) } } } } fn merge<T, U>(l_tree: &mut Link<T, U>, r_tree: Link<T, U>) { match (l_tree.take(), r_tree) { (Some(mut l_node), Some(mut r_node)) => { if l_node.priority > r_node.priority { merge(&mut l_node.r, Some(r_node)); *l_tree = Some(l_node); } else { let mut new_tree = Some(l_node); merge(&mut new_tree, r_node.l.take()); r_node.l = new_tree; *l_tree = Some(r_node); } } (new_tree, None) | (None, new_tree) => *l_tree = new_tree, } } fn insert<T: Ord, U>(tree: &mut Link<T, U>, new_node: Node<T, U>) { let (mut left, right) = split(tree.take(), &new_node.key); merge(&mut left, Some(Box::new(new_node))); merge(&mut left, right); *tree = left.take(); } fn remove<T: Ord, U>(tree: &mut Link<T, U>, key: &T) { let mut new_tree; match tree { Some(ref mut node) => match key.cmp(&node.key) { Ordering::Less => { remove(&mut node.l, key); return; } Ordering::Greater => { remove(&mut node.r, key); return; } Ordering::Equal => { new_tree = node.l.take(); merge(&mut new_tree, node.r.take()); } }, None => return, } std::mem::replace(tree, new_tree); } fn get<'a, T: Ord, U>(tree: &'a Link<T, U>, key: &T) -> Option<(&'a T, &'a U)> { tree.as_ref().and_then(|node| match key.cmp(&node.key) { Ordering::Less => get(&node.l, key), Ordering::Greater => get(&node.r, key), Ordering::Equal => Some((&node.key, &node.value)), }) } fn next<'a, T: Ord, U>( tree: &'a Link<T, U>, key: &T, inclusive: bool, ) -> Option<(&'a T, &'a U)> { tree.as_ref().and_then(|node| match key.cmp(&node.key) { Ordering::Greater => next(&node.r, key, inclusive), Ordering::Less => match next(&node.l, key, inclusive) { None => Some((&node.key, &node.value)), res => res, }, Ordering::Equal => { if inclusive { Some((&node.key, &node.value)) } else { next(&node.r, key, inclusive) } } }) } fn prev<'a, T: Ord, U>( tree: &'a Link<T, U>, key: &T, inclusive: bool, ) -> Option<(&'a T, &'a U)> { tree.as_ref().and_then(|node| match key.cmp(&node.key) { Ordering::Less => prev(&node.l, key, inclusive), Ordering::Greater => match prev(&node.r, key, inclusive) { None => Some((&node.key, &node.value)), res => res, }, Ordering::Equal => { if inclusive { Some((&node.key, &node.value)) } else { prev(&node.l, key, inclusive) } } }) } fn min<T: Ord, U>(tree: &Link<T, U>) -> Option<(&T, &U)> { tree.as_ref().and_then(|node| { let mut curr = node; while let Some(ref left_node) = curr.l { curr = left_node; } Some((&curr.key, &curr.value)) }) } fn max<T: Ord, U>(tree: &Link<T, U>) -> Option<(&T, &U)> { tree.as_ref().and_then(|node| { let mut curr = node; while let Some(ref right_node) = curr.r { curr = right_node; } Some((&curr.key, &curr.value)) }) } fn keyof<'a, T, U>(tpl: Option<(&'a T, &U)>) -> Option<&'a T> { tpl.map(|t| t.0) } fn identity<T>(arg: T) -> T { arg } #[derive(Debug, Clone)] pub struct TreapMap<T, U> { tree: Link<T, U>, rng: Random, } #[derive(Debug, Clone)] pub struct TreapSet<T> { tree: Link<T, ()>, rng: Random, } macro_rules ! treap_impl { ( $ rt : ty , $ mapfn : ident ) => { pub fn new ( ) -> Self { Self { tree : None , rng : Random :: new ( ) } } pub fn remove ( & mut self , key : & T ) { let tree = & mut self . tree ; remove ( tree , key ) ; } pub fn erase ( & mut self , range : Range < T > ) { let right = self . split_off ( & range . end ) ; self . split_off ( & range . start ) ; self . merge ( right ) ; } pub fn contains ( & self , key : & T ) -> bool { let tree = & self . tree ; get ( tree , key ) . is_some ( ) } pub fn prev ( & self , key : & T , inclusive : bool ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( prev ( tree , key , inclusive ) ) } pub fn next ( & self , key : & T , inclusive : bool ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( next ( tree , key , inclusive ) ) } pub fn min ( & self ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( min ( tree ) ) } pub fn max ( & self ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( max ( tree ) ) } pub fn min_exn ( & self ) -> $ rt { self . min ( ) . unwrap ( ) } pub fn max_exn ( & self ) -> $ rt { self . max ( ) . unwrap ( ) } # [ doc = " self = (∞, key) & return = [key, ∞)" ] pub fn split_off ( & mut self , key : & T ) -> Self { let tree = & mut self . tree ; let ( mut left , right ) = split ( tree . take ( ) , key ) ; * tree = left . take ( ) ; Self { tree : right , rng : Random :: new ( ) } } pub fn merge ( & mut self , right : Self ) { let tree = & mut self . tree ; merge ( tree , right . tree ) } pub fn ilen ( & self ) -> i32 { self . iter ( ) . count ( ) as i32 } pub fn is_empty ( & self ) -> bool { self . min ( ) . is_none ( ) } pub fn get ( & self , key : & T ) -> Option <$ rt > { let tree = & self . tree ; $ mapfn ( get ( tree , key ) ) } } ; } impl<T: Ord> TreapSet<T> { treap_impl! { & T , keyof } } impl<T: Ord, U> TreapMap<T, U> { treap_impl! { ( & T , & U ) , identity } } impl<T: Ord> TreapSet<T> { pub fn insert(&mut self, key: T) { let tree = &mut self.tree; let new_node = Node::new(key, (), self.rng.next(std::u64::MAX)); insert(tree, new_node); } pub fn iter(&self) -> impl Iterator<Item = &T> { (0..).scan( (&self.tree, Vec::<&Node<T, ()>>::new()), |(current, stack), _| { while let Some(ref node) = current { *current = &node.l; stack.push(node); } stack.pop().map(|node| { let Node { ref key, ref r, .. } = node; *current = r; key }) }, ) } pub fn range(&self, range: Range<T>) -> impl Iterator<Item = &T> { (0..).scan(self.next(&range.start, true), move |state, _| { if let &mut Some(t) = state { if t >= &range.end { return None; } *state = self.next(t, false); Some(t) } else { return None; } }) } } impl<T: Ord, U> TreapMap<T, U> { pub fn insert(&mut self, key: T, value: U) { let tree = &mut self.tree; let new_node = Node::new(key, value, self.rng.next(std::u64::MAX)); insert(tree, new_node); } pub fn iter(&self) -> impl Iterator<Item = (&T, &U)> { (0..).scan( (&self.tree, Vec::<&Node<T, U>>::new()), |(current, stack), _| { while let Some(ref node) = current { *current = &node.l; stack.push(node); } stack.pop().map(|node| { let Node { ref key, ref value, ref r, .. } = node; *current = r; (key, value) }) }, ) } pub fn range(&self, range: Range<T>) -> impl Iterator<Item = (&T, &U)> { (0..).scan(self.next(&range.start, true), move |state, _| { if let &mut Some(t) = state { if t.0 >= &range.end { return None; } *state = self.next(t.0, false); Some(t) } else { return None; } }) } } impl<T: Ord> FromIterator<T> for TreapSet<T> { fn from_iter<V: IntoIterator<Item = T>>(iter: V) -> Self { let mut set = TreapSet::new(); for i in iter { set.insert(i); } set } } impl<T: Ord, U> FromIterator<(T, U)> for TreapMap<T, U> { fn from_iter<V: IntoIterator<Item = (T, U)>>(iter: V) -> Self { let mut set = TreapMap::new(); for (i, j) in iter { set.insert(i, j); } set } } } } pub mod ext { pub mod range { use crate::independent::integer::Int; use std::cmp::{max, min}; use std::ops::{Bound, Range, RangeBounds}; pub trait IntRangeBounds<U: Int>: RangeBounds<U> { fn lbopt(&self) -> Option<U> { match self.start_bound() { Bound::Included(x) => Some(*x), Bound::Excluded(x) => Some(*x + U::one()), Bound::Unbounded => None, } } fn ubopt(&self) -> Option<U> { match self.end_bound() { Bound::Included(x) => Some(*x + U::one()), Bound::Excluded(x) => Some(*x), Bound::Unbounded => None, } } #[doc = " inclusive"] fn lower_bound(&self, limit: U) -> U { self.lbopt().map_or(limit, |x| max(limit, x)) } #[doc = " exclusive"] fn upper_bound(&self, limit: U) -> U { self.ubopt().map_or(limit, |x| min(limit, x)) } fn to_harfopen(&self, lb: U, ub: U) -> Range<U> { self.lower_bound(lb)..self.upper_bound(ub) } fn width(&self) -> U { if self.empty() { U::zero() } else { self.ubopt().unwrap() - self.lbopt().unwrap() } } fn empty(&self) -> bool { self.lbopt().is_none() || self.ubopt().is_none() || !(self.lbopt().unwrap() < self.ubopt().unwrap()) } fn contain_range(&self, inner: &Self) -> bool { (match (self.lbopt(), inner.lbopt()) { (Some(a), Some(b)) => a <= b, (None, _) => true, (Some(_), None) => false, }) && (match (inner.ubopt(), self.ubopt()) { (Some(a), Some(b)) => a <= b, (_, None) => true, (None, Some(_)) => false, }) } fn separate_range(&self, other: &Self) -> bool { if let (Some(a), Some(b)) = (self.ubopt(), other.lbopt()) { a <= b } else if let (Some(a), Some(b)) = (other.ubopt(), self.lbopt()) { a <= b } else { false } } fn overlap(&self, other: &Self) -> Range<U> { let left = if let (Some(a), Some(b)) = (self.lbopt(), other.lbopt()) { max(a, b) } else { self.lbopt().or(other.lbopt()).unwrap() }; let right = if let (Some(a), Some(b)) = (self.ubopt(), other.ubopt()) { min(a, b) } else { self.ubopt().or(other.ubopt()).unwrap() }; left..right } } impl<T: ?Sized, U: Int> IntRangeBounds<U> for T where T: RangeBounds<U> {} } }