結果
| 問題 |
No.864 四方演算
|
| コンテスト | |
| ユーザー |
へのく
|
| 提出日時 | 2020-06-25 21:08:43 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 12 ms / 1,000 ms |
| コード長 | 22,605 bytes |
| コンパイル時間 | 17,263 ms |
| コンパイル使用メモリ | 388,828 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-03 21:48:29 |
| 合計ジャッジ時間 | 18,813 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
#![allow(unused_imports, non_snake_case)]
#![allow(dead_code)]
use crate::scanner::Scanner;
use crate::{arraylist::List, prime_number::divisors};
fn main() {
let mut scan = Scanner::new();
let n = scan.read::<i64>();
let k = scan.read::<i64>();
let d = divisors(k);
let mut ret = 0;
for &e in &d {
ret += calc(n, e) * calc(n, k / e);
}
println!("{}", ret);
}
fn calc(n: i64, e: i64) -> i64 {
if n + 1 >= e {
e - 1
} else if e <= 2 * n {
2 * n - e + 1
} else {
0
}
}
pub mod independent {
pub mod integer {
pub trait Int:
std::ops::Add<Output = Self>
+ std::ops::Sub<Output = Self>
+ std::ops::Mul<Output = Self>
+ std::ops::Div<Output = Self>
+ std::ops::Rem<Output = Self>
+ std::ops::AddAssign
+ std::ops::SubAssign
+ std::ops::MulAssign
+ std::ops::DivAssign
+ std::hash::Hash
+ PartialEq
+ Eq
+ PartialOrd
+ Ord
+ Copy
{
fn to_u8(&self) -> u8;
fn to_u16(&self) -> u16;
fn to_u32(&self) -> u32;
fn to_u64(&self) -> u64;
fn to_u128(&self) -> u128;
fn to_i8(&self) -> i8;
fn to_i16(&self) -> i16;
fn to_i32(&self) -> i32;
fn to_i64(&self) -> i64;
fn to_i128(&self) -> i128;
fn to_usize(&self) -> usize;
fn to_isize(&self) -> isize;
fn from_u8(x: u8) -> Self;
fn from_u16(x: u16) -> Self;
fn from_u32(x: u32) -> Self;
fn from_u64(x: u64) -> Self;
fn from_u128(x: u128) -> Self;
fn from_i8(x: i8) -> Self;
fn from_i16(x: i16) -> Self;
fn from_i32(x: i32) -> Self;
fn from_i64(x: i64) -> Self;
fn from_i128(x: i128) -> Self;
fn from_usize(x: usize) -> Self;
fn from_isize(x: isize) -> Self;
fn zero() -> Self;
fn one() -> Self;
fn next(&self) -> Self {
*self + Self::one()
}
}
macro_rules ! impl_integer_functions { ( $ selftpe : ident , $ ( $ tofn : ident , $ fromfn : ident , $ tpe : ident ) ,* ) => { $ ( fn $ tofn ( & self ) -> $ tpe { * self as $ tpe } fn $ fromfn ( x : $ tpe ) -> Self { x as $ selftpe } ) * } ; }
macro_rules ! impl_integer { ( $ ( $ tpe : ident ) ,* ) => { $ ( impl Int for $ tpe { impl_integer_functions ! ( $ tpe , to_u8 , from_u8 , u8 , to_u16 , from_u16 , u16 , to_u32 , from_u32 , u32 , to_u64 , from_u64 , u64 , to_u128 , from_u128 , u128 , to_i8 , from_i8 , i8 , to_i16 , from_i16 , i16 , to_i32 , from_i32 , i32 , to_i64 , from_i64 , i64 , to_i128 , from_i128 , i128 , to_usize , from_usize , usize , to_isize , from_isize , isize ) ; fn zero ( ) -> Self { 0 } fn one ( ) -> Self { 1 } } ) * } ; }
impl_integer!(u8, u16, u32, u64, u128, i8, i16, i32, i64, i128, usize, isize);
}
}
pub mod prime_number {
use crate::arraylist::List;
use crate::data_structure::counter::Counter;
pub fn is_prime(n: i64) -> bool {
for i in (2..).take_while(|i| i * i <= n) {
if n % i == 0 {
return false;
}
}
n != 1
}
pub fn divisors(n: i64) -> List<i64> {
let mut ret = List::new();
for i in (1..).take_while(|i| i * i <= n) {
if n % i == 0 {
ret.push(i);
if i != n / i {
ret.push(n / i);
}
}
}
ret
}
pub fn prime_factors(n_: i64) -> Counter<i64> {
let mut ret = Counter::new();
let n = std::cell::Cell::new(n_);
for i in (2..).take_while(|&i| i * i <= n.get()) {
while n.get() % i == 0 {
ret[i] += 1;
n.set(n.get() / i);
}
}
if n.get() != 1 {
ret[n.get()] = 1;
}
ret
}
pub fn sieve(n: i32) -> (List<i32>, List<bool>) {
let mut primes = List::new();
let mut is_prime = List::init(true, n + 1);
is_prime[0] = false;
is_prime[1] = false;
for i in 2..n + 1 {
if is_prime[i] {
primes.push(i);
for j in (2..).map(|j| j * i).take_while(|&j| j <= n) {
is_prime[j] = false;
}
}
}
(primes, is_prime)
}
}
pub mod data_structure {
pub mod counter {
use std::collections::HashMap;
use std::hash::Hash;
use std::ops::*;
#[derive(Clone, Debug)]
pub struct Counter<K: Eq + Hash> {
pub cnt: HashMap<K, i64>,
pub d: i64,
}
impl<K: Eq + Hash> Counter<K> {
pub fn new() -> Counter<K> {
Counter {
cnt: HashMap::new(),
d: 0,
}
}
#[doc = " Remove key when the value <= 0"]
pub fn dec(&mut self, key: K, delta: i64) {
if self.by_ref(&key) - delta <= 0 {
self.remove(&key);
} else {
*self.cnt.get_mut(&key).unwrap() -= delta;
}
}
pub fn by_ref(&self, key: &K) -> i64 {
*self.cnt.get(key).unwrap_or(&self.d)
}
}
impl<K: Eq + Hash> Deref for Counter<K> {
type Target = HashMap<K, i64>;
fn deref(&self) -> &Self::Target {
&self.cnt
}
}
impl<K: Eq + Hash> DerefMut for Counter<K> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.cnt
}
}
impl<K: Eq + Hash> Index<K> for Counter<K> {
type Output = i64;
fn index(&self, index: K) -> &Self::Output {
self.cnt.get(&index).unwrap_or(&self.d)
}
}
impl<K: Eq + Hash + Clone> IndexMut<K> for Counter<K> {
fn index_mut(&mut self, index: K) -> &mut i64 {
if !self.cnt.contains_key(&index) {
self.cnt.insert(index.clone(), self.d);
}
self.cnt.get_mut(&index).unwrap()
}
}
impl<K: Eq + Hash> std::iter::FromIterator<K> for Counter<K> {
fn from_iter<T: IntoIterator<Item = K>>(iter: T) -> Self {
let mut cnt = HashMap::new();
for i in iter {
*cnt.entry(i).or_insert(0) += 1;
}
Counter { cnt, d: 0 }
}
}
impl<T: Eq + Hash + Clone> Add for Counter<T> {
type Output = Counter<T>;
fn add(self, other: Counter<T>) -> Counter<T> {
let mut ret = Counter::new();
for (k, v) in self.iter().chain(other.iter()) {
ret[k.clone()] += *v;
}
ret
}
}
impl<T: Eq + Hash + Clone> AddAssign for Counter<T> {
fn add_assign(&mut self, other: Self) {
*self = self.clone().add(other);
}
}
}
}
pub mod arraylist {
use crate::{ext::range::IntRangeBounds, independent::integer::Int};
use std::fmt::Formatter;
use std::iter::FromIterator;
use std::ops::{Index, IndexMut, RangeBounds};
use std::slice::Iter;
#[derive(Clone, PartialEq, Eq)]
pub struct List<T> {
pub vec: Vec<T>,
}
impl<T> List<T> {
#[inline]
pub fn new() -> List<T> {
List { vec: vec![] }
}
#[inline]
pub fn init(init: T, n: i32) -> List<T>
where
T: Clone,
{
List {
vec: vec![init; n as usize],
}
}
#[inline]
pub fn from_vec(vec: Vec<T>) -> List<T> {
List { vec }
}
#[inline]
pub fn acc<'a, S>(n: i32, mut f: S) -> List<T>
where
S: FnMut(i32) -> T + 'a,
{
(0..n).map(|i| f(i)).collect()
}
#[inline]
pub fn ilen(&self) -> i32 {
self.vec.len() as i32
}
#[inline]
pub fn iter(&self) -> Iter<'_, T> {
self.vec.iter()
}
#[inline]
pub fn push(&mut self, item: T) {
self.vec.push(item);
}
#[inline]
pub fn sort(&mut self)
where
T: Ord,
{
self.vec.sort();
}
#[inline]
pub fn reverse(&mut self) {
self.vec.reverse();
}
#[inline]
pub fn sort_by<F>(&mut self, compare: F)
where
F: FnMut(&T, &T) -> std::cmp::Ordering,
{
self.vec.sort_by(compare)
}
#[inline]
pub fn sort_by_key<K, F>(&mut self, compare: F)
where
F: FnMut(&T) -> K,
K: Ord,
{
self.vec.sort_by_key(compare)
}
#[inline]
pub fn first(&self) -> Option<&T> {
self.vec.first()
}
#[inline]
pub fn last(&self) -> Option<&T> {
self.vec.last()
}
#[inline]
pub fn pop(&mut self) -> Option<T> {
self.vec.pop()
}
#[inline]
pub fn swap(&mut self, i: i32, j: i32) {
self.vec.swap(i as usize, j as usize);
}
#[inline]
pub fn append(&mut self, mut other: Self) {
self.vec.append(&mut other.vec);
}
#[inline]
pub fn extend(&mut self, other: impl Iterator<Item = T>) {
self.vec.extend(other);
}
#[inline]
pub fn mirror(&self) -> std::iter::Cloned<Iter<T>>
where
T: Clone,
{
self.iter().cloned()
}
#[inline]
pub fn join(&self, sep: &str) -> String
where
T: std::fmt::Display,
{
self.iter()
.map(|x| format!("{}", x))
.collect::<Vec<_>>()
.join(sep)
}
#[inline]
pub fn map<B, F>(&self, f: F) -> List<B>
where
T: Clone,
F: FnMut(T) -> B,
{
self.mirror().map(f).collect()
}
#[inline]
pub fn filter<P>(&self, predicate: P) -> List<T>
where
T: Clone,
P: FnMut(&T) -> bool,
{
self.mirror().filter(predicate).collect()
}
#[inline]
pub fn filter_map<B, F>(&self, f: F) -> List<B>
where
T: Clone,
F: FnMut(T) -> Option<B>,
{
self.mirror().filter_map(f).collect()
}
#[doc = " |acc, x| -> acc"]
#[inline]
pub fn fold<B, F>(&self, init: B, f: F) -> B
where
T: Clone,
F: FnMut(B, T) -> B,
{
self.mirror().fold(init, f)
}
#[inline]
pub fn any<P>(&self, predicate: P) -> bool
where
P: FnMut(&T) -> bool,
{
self.iter().any(predicate)
}
#[inline]
pub fn all<P>(&self, predicate: P) -> bool
where
P: FnMut(&T) -> bool,
{
self.iter().all(predicate)
}
#[inline]
pub fn sum(&self) -> T
where
T: Int,
{
self.iter().cloned().fold(T::zero(), |acc, x| acc + x)
}
#[inline]
pub fn enumerate(&self) -> List<(i32, T)>
where
T: Clone,
{
self.mirror()
.enumerate()
.map(|p| (p.0 as i32, p.1))
.collect()
}
#[inline]
pub fn find<P>(&self, mut predicate: P) -> Option<&T>
where
P: FnMut(&T) -> bool,
{
self.iter().find(|x| predicate(*x))
}
#[inline]
pub fn index_of<P>(&self, mut predicate: P) -> Option<i32>
where
P: FnMut(&T) -> bool,
{
self.iter()
.enumerate()
.find(|&(_i, x)| predicate(x))
.map(|p| p.0 as i32)
}
#[inline]
pub fn to<B: FromIterator<T>>(&self) -> B
where
T: Clone,
{
self.mirror().collect()
}
#[inline]
pub fn min(&self) -> Option<&T>
where
T: Ord,
{
self.iter().min()
}
#[inline]
pub fn max(&self) -> Option<&T>
where
T: Ord,
{
self.iter().max()
}
#[inline]
pub fn argmin(&self) -> Option<i32>
where
T: Ord,
{
let item = self.iter().min()?;
self.iter()
.enumerate()
.find(|p| p.1 == item)
.map(|p| p.0 as i32)
}
#[inline]
pub fn argmax(&self) -> Option<i32>
where
T: Ord,
{
let item = self.iter().max()?;
self.iter()
.enumerate()
.find(|p| p.1 == item)
.map(|p| p.0 as i32)
}
#[inline]
pub fn part<U>(&self, range: U) -> List<T>
where
T: Clone,
U: RangeBounds<i32>,
{
List::from_vec(
self.vec[range.lower_bound(0) as usize..range.upper_bound(self.ilen()) as usize]
.to_vec(),
)
}
#[inline]
pub fn first_exn(&self) -> &T {
self.first().unwrap()
}
#[inline]
pub fn last_exn(&self) -> &T {
self.last().unwrap()
}
#[inline]
pub fn pop_exn(&mut self) -> T {
self.pop().unwrap()
}
#[inline]
pub fn min_exn(&self) -> &T
where
T: Ord,
{
self.min().unwrap()
}
#[inline]
pub fn max_exn(&self) -> &T
where
T: Ord,
{
self.max().unwrap()
}
#[inline]
pub fn argmin_exn(&self) -> i32
where
T: Ord,
{
self.argmin().unwrap()
}
#[inline]
pub fn argmax_exn(&self) -> i32
where
T: Ord,
{
self.argmax().unwrap()
}
#[inline]
pub fn find_exn<P>(&self, predicate: P) -> &T
where
P: FnMut(&T) -> bool,
{
self.find(predicate).unwrap()
}
#[inline]
pub fn index_of_exn<P>(&self, predicate: P) -> i32
where
P: FnMut(&T) -> bool,
{
self.index_of(predicate).unwrap()
}
}
impl<T> std::ops::BitXorAssign<T> for List<T> {
#[inline]
fn bitxor_assign(&mut self, rhs: T) {
self.push(rhs);
}
}
impl<T> Index<i32> for List<T> {
type Output = T;
#[inline]
fn index(&self, index: i32) -> &Self::Output {
if cfg!(debug_assertions) {
self.vec.index(index as usize)
} else {
unsafe { self.vec.get_unchecked(index as usize) }
}
}
}
impl<T> IndexMut<i32> for List<T> {
#[inline]
fn index_mut(&mut self, index: i32) -> &mut Self::Output {
if cfg!(debug_assertions) {
self.vec.index_mut(index as usize)
} else {
unsafe { self.vec.get_unchecked_mut(index as usize) }
}
}
}
impl<T> FromIterator<T> for List<T> {
fn from_iter<U: IntoIterator<Item = T>>(iter: U) -> Self {
List {
vec: iter.into_iter().collect(),
}
}
}
impl<T> IntoIterator for List<T> {
type Item = T;
type IntoIter = std::vec::IntoIter<T>;
fn into_iter(self) -> std::vec::IntoIter<T> {
self.vec.into_iter()
}
}
impl<'a, T> IntoIterator for &'a List<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.vec.iter()
}
}
impl<T: std::fmt::Display> std::fmt::Display for List<T> {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"{}",
self.iter()
.map(|x| format!("{}", x))
.collect::<Vec<_>>()
.join(" ")
)
}
}
impl<T: std::fmt::Debug> std::fmt::Debug for List<T> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(
f,
"[{}]",
self.iter()
.map(|x| format!("{:?}", x))
.collect::<Vec<_>>()
.join(", ")
)
}
}
impl<T> From<Vec<T>> for List<T> {
fn from(vec: Vec<T>) -> Self {
Self::from_vec(vec)
}
}
impl<T: Clone> From<&[T]> for List<T> {
fn from(slice: &[T]) -> Self {
slice.iter().cloned().collect()
}
}
#[macro_export]
macro_rules ! list { ( ) => { $ crate :: arraylist :: List :: new ( ) } ; ( $ ( $ v : expr ) ,+ $ ( , ) ? ) => { $ crate :: arraylist :: List :: from_vec ( [ $ ( $ v ) ,+ ] . to_vec ( ) ) } ; ( $ v : expr ; $ a : expr ) => { $ crate :: arraylist :: List :: init ( $ v , $ a ) } ; ( $ v : expr ; $ a : expr ; $ ( $ rest : expr ) ;+ ) => { $ crate :: arraylist :: List :: init ( list ! ( $ v ; $ ( $ rest ) ;+ ) , $ a ) } ; }
}
pub mod scanner {
use crate::arraylist::List;
use std::io::{stdin, BufReader, Bytes, Read, Stdin};
use std::str::FromStr;
macro_rules ! impl_readxn { ( $ name : ident , $ ( $ tpe : ident ) ,+ ) => { pub fn $ name <$ ( $ tpe : FromStr ) ,+> ( & mut self , n : i32 ) -> List < ( $ ( $ tpe ) ,+ ) > { ( 0 .. n ) . map ( | _ | ( $ ( self . read ::<$ tpe > ( ) ) ,+ ) ) . collect ( ) } } ; }
pub struct Scanner {
buf: Bytes<BufReader<Stdin>>,
}
impl Scanner {
pub fn new() -> Scanner {
Scanner {
buf: BufReader::new(stdin()).bytes(),
}
}
pub fn read_next<T: FromStr>(&mut self) -> Option<T> {
let token = self
.buf
.by_ref()
.map(|c| c.unwrap() as char)
.skip_while(|c| c.is_whitespace())
.take_while(|c| !c.is_whitespace())
.collect::<String>();
token.parse::<T>().ok()
}
pub fn read<T: FromStr>(&mut self) -> T {
self.read_next().unwrap()
}
pub fn readn<T: FromStr>(&mut self, n: i32) -> List<T> {
(0..n).map(|_| self.read::<T>()).collect()
}
pub fn chars(&mut self) -> List<char> {
self.read::<String>().chars().collect()
}
impl_readxn!(read2n, P, Q);
impl_readxn!(read3n, P, Q, R);
impl_readxn!(read4n, P, Q, R, S);
impl_readxn!(read5n, P, Q, R, S, T);
}
}
pub mod ext {
pub mod range {
use crate::independent::integer::Int;
use std::cmp::{max, min};
use std::ops::{Bound, Range, RangeBounds};
pub trait IntRangeBounds<U: Int>: RangeBounds<U> {
fn lbopt(&self) -> Option<U> {
match self.start_bound() {
Bound::Included(x) => Some(*x),
Bound::Excluded(x) => Some(*x + U::one()),
Bound::Unbounded => None,
}
}
fn ubopt(&self) -> Option<U> {
match self.end_bound() {
Bound::Included(x) => Some(*x + U::one()),
Bound::Excluded(x) => Some(*x),
Bound::Unbounded => None,
}
}
#[doc = " inclusive"]
fn lower_bound(&self, limit: U) -> U {
self.lbopt().map_or(limit, |x| max(limit, x))
}
#[doc = " exclusive"]
fn upper_bound(&self, limit: U) -> U {
self.ubopt().map_or(limit, |x| min(limit, x))
}
fn to_harfopen(&self, lb: U, ub: U) -> Range<U> {
self.lower_bound(lb)..self.upper_bound(ub)
}
fn width(&self) -> U {
if self.empty() {
U::zero()
} else {
self.ubopt().unwrap() - self.lbopt().unwrap()
}
}
fn empty(&self) -> bool {
self.lbopt().is_none()
|| self.ubopt().is_none()
|| !(self.lbopt().unwrap() < self.ubopt().unwrap())
}
fn contain_range(&self, inner: &Self) -> bool {
(match (self.lbopt(), inner.lbopt()) {
(Some(a), Some(b)) => a <= b,
(None, _) => true,
(Some(_), None) => false,
}) && (match (inner.ubopt(), self.ubopt()) {
(Some(a), Some(b)) => a <= b,
(_, None) => true,
(None, Some(_)) => false,
})
}
fn separate_range(&self, other: &Self) -> bool {
if let (Some(a), Some(b)) = (self.ubopt(), other.lbopt()) {
a <= b
} else if let (Some(a), Some(b)) = (other.ubopt(), self.lbopt()) {
a <= b
} else {
false
}
}
fn overlap(&self, other: &Self) -> Range<U> {
let left = if let (Some(a), Some(b)) = (self.lbopt(), other.lbopt()) {
max(a, b)
} else {
self.lbopt().or(other.lbopt()).unwrap()
};
let right = if let (Some(a), Some(b)) = (self.ubopt(), other.ubopt()) {
min(a, b)
} else {
self.ubopt().or(other.ubopt()).unwrap()
};
left..right
}
}
impl<T: ?Sized, U: Int> IntRangeBounds<U> for T where T: RangeBounds<U> {}
}
}
へのく