結果
問題 | No.1095 Smallest Kadomatsu Subsequence |
ユーザー |
![]() |
提出日時 | 2020-06-26 21:34:24 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 512 ms / 2,000 ms |
コード長 | 9,864 bytes |
コンパイル時間 | 2,228 ms |
コンパイル使用メモリ | 209,080 KB |
最終ジャッジ日時 | 2025-01-11 10:57:25 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
// May this submission get accepted#include <bits/stdc++.h>// エイリアスusing ll = long signed long;using ull = long unsigned long;using ld = long double;using namespace std;// AtCoder/Codeforces 用 デバッグ検知#ifdef ONLINE_JUDGEconstexpr bool DEBUG_MODE = false;#elseconstexpr bool DEBUG_MODE = true;#endif// エイリアス (補完・コンパイルが重くなる)// #include <boost/multiprecision/cpp_int.hpp>// using mll = boost::multiprecision::cpp_int;// 汎用マクロ#define ALLOF(x) (x).begin(), (x).end()#define REP(i,n) for (long long i=0, i##_len=(n); i<i##_len; i++)#define RANGE(i,is,ie) for (long long i=(is), i##_end=(ie); i<=i##_end; i++)#define DSRNG(i,is,ie) for (long long i=(is), i##_end=(ie); i>=i##_end; i--)#define STEP(i, is, ie, step) for (long long i=(is), i##_end=(ie), i##_step = (step); i<=i##_end; i+=i##_step)#define UNIQUE(v) do { sort((v).begin(), (v).end()); (v).erase(unique((v).begin(), (v).end()), (v).end()); } while (false)#define FOREACH(i,q) for (auto &i : q)template<class T> bool chmax(T &a, const T b) { if (a < b) {a = b; return true;} return false; }template<class T> bool chmin(T &a, const T b) { if (a > b) {a = b; return true;} return false; }constexpr int INF = numeric_limits<int>::max();constexpr long long LINF = numeric_limits<long long>::max();constexpr long double EPS = 1e-10L;#define Yes(q) ((q) ? "Yes" : "No")#define YES(q) ((q) ? "YES" : "NO")#define Possible(q) ((q) ? "Possible" : "Impossible")#define POSSIBLE(q) ((q) ? "POSSIBLE" : "IMPOSSIBLE")#define IIF(q,t,f) ((q) ? (t) : (f))#define DUMP(q) DUMP_FUNC(q, #q, __FILE__, __LINE__)template <typename T> void DUMP_PROC(T x) { if (is_integral<T>() || is_floating_point<T>()) cerr << "\e[32m" << x << "\e[m"; else cerr << x; }template<> void DUMP_PROC<char>(char x) { cerr << "\e[36m\'" << x << "\'\e[m"; }template<> void DUMP_PROC<string>(string x) { cerr << "\e[33m\"" << x << "\"\e[m"; }template <typename T, typename U> void DUMP_PROC(pair<T, U> x) { cerr << "{"; DUMP_PROC(x.first); cerr << ", "; DUMP_PROC(x.second); cerr << "}"; }template <typename ...T, typename U, U... Seq> void DUMP_PROC(tuple<T...> &x, integer_sequence<U, Seq...>) { (void)(int[]){(cerr << ((const char*[]){"", ", "})[!!Seq] << (DUMP_PROC(get<Seq>(x)), ""), 0)...}; }template <typename ...T> void DUMP_PROC(tuple<T...> x) {cerr << "{"; DUMP_PROC(x, index_sequence_for<T...>()); cerr << "}";}template <typename T> void DUMP_PROC(vector<T> x) { cerr << "["; for (auto &xi : x) { DUMP_PROC(xi); cerr << (&xi != &*x.rbegin()?", ":""); } cerr <<"]"; }template <typename T> void DUMP_FUNC(T x, const char* name, const char* fn, int ln) { cerr << "\e[32m[DEBUG]\e[m " << name << ": "; DUMP_PROC(x);cerr << " @ " << fn << "(" << ln << ")" << endl; }// gcc拡張マクロ#define popcount __builtin_popcount#define popcountll __builtin_popcountll// 標準入出力struct qin { // query inputsize_t sz;qin(size_t _sz = 1) : sz(_sz) {}template <typename T> operator T () const { T a; cin >> a; return a; }template <typename T> operator vector<T> () const { vector<T> a(sz); for (size_t i = 0; i < sz; i++) cin >> a[i]; return a; }template <typename T, typename U> operator pair<T, U> () const { T f; U s; cin >> f >> s; return pair<T, U>(f, s); }};qin in1; // input onetemplate <typename T> void say(const T x, const char* end = "\n") { cout << x << end; }void say(const ld x, const char* end = "\n") { cout << setprecision(30) << x << end; }template <typename T> void say(const vector<T> x, const char* sep = " ", const char* end = "\n") { REP(i, x.size()) { cout << x[i] << (i+1 == i_len ?end : sep); } }template <typename T> void say(const vector<vector<T>> x, const char* sep = " ", const char* end = "\n") { REP(i, x.size()) { say(x[i], sep, end); }}// モジュール// [[LIBRARY]] segtree_lazy2.cpp// [Inclusion] segtree_lazy2.cpp// 遅延評価セグ木 T: 値の型, U: 操作の型template<typename T, typename U, typename JOIN_T, typename APPLY_U, typename JOIN_U, typename MULTIPLY_U, typename HALF_U>class segtree {T IT; // T の単位元U IU; // U の単位元JOIN_T join_t; // 値同士のjoin; T(T: 左の値, T: 右の値)APPLY_U apply_u; // 操作を値に適用する; T(T: 操作前の値, U: 操作)JOIN_U join_u; // 操作をjoinする; U(U: 古い操作, U: 新しい操作)MULTIPLY_U multiply_u; // 操作をn回やる操作を作る; U(U: 操作, ll: 2冪の正整数)HALF_U half_u; // 半分の操作を作る; U(U: multiply_uによって2冪倍された操作)ll n; // 元の配列のサイズvector<T> node;vector<U> lazy;vector<char> fall; // vector<bool>は空間が良いが時間が悪いのでvector<char>で代用// [l, r) を見ており, k を遅延評価inline void eval(ll k, ll l, ll r) {if (!fall[k]) return;node[k] = apply_u(node[k], lazy[k]);if (r-l > 1) { // 子があるなら伝播lazy[k*2+1] = join_u(lazy[k*2+1], half_u(lazy[k]));lazy[k*2+2] = join_u(lazy[k*2+2], half_u(lazy[k]));fall[k*2+1] = fall[k*2+2] = true;}lazy[k] = IU;fall[k] = false;}public:// コンストラクタsegtree(const vector<T> &v, T _it, U _iu, JOIN_T _jot, APPLY_U _apu, JOIN_U _jou, MULTIPLY_U _muu, HALF_U _hau):IT(_it), IU(_iu), join_t(_jot), apply_u(_apu), join_u(_jou), multiply_u(_muu), half_u(_hau){ll sz = (ll)v.size();n = 1; while (n < sz) n *= 2;this->node = vector<T >(n * 2 - 1, IT);this->lazy = vector<U >(n * 2 - 1, IU);this->fall = vector<char>(n * 2 - 1, false);for (ll i = 0; i < sz; i++) node[n-1 + i] = v[i];for (ll i = n-1; i--; ) node[i] = join_t(node[i*2+1], node[i*2+2]);}// 区間 [a, b) に x を適用(但し, [l, r)を見て今kをいじっている)void apply(ll a, ll b, U x, ll k = 0, ll l = 0, ll r = -1) {if (r < 0) r = n; // デフォルト値には定数しか入れられないeval(k, l, r);if (b <= l || r <= a) return; // セグフォ防止if (a <= l && r <= b) {lazy[k] = join_u(lazy[k], multiply_u(x, r - l));fall[k] = true;eval(k, l, r);} else {apply(a, b, x, k*2+1, l, (l+r)/2);apply(a, b, x, k*2+2, (l+r)/2, r);node[k] = join_t(node[k*2+1], node[k*2+2]);}}// 区間 [a, b) の操作後の値を求めるT fetch(ll a, ll b, ll k = 0, ll l = 0, ll r = -1) {if (r < 0) r = n; // デフォルト値には定数しか入れられないif (b <= l || r <= a) return IT; // セグフォ防止eval(k, l, r);if (a <= l && r <= b) return node[k];T vl = fetch(a, b, k*2+1, l, (l+r)/2);T vr = fetch(a, b, k*2+2, (l+r)/2, r);return join_t(vl, vr);}// 点 a == 区間 [a, a+1) に x を適用inline void applyp(ll a, U x) { apply(a, a+1, x); }// 点 a == 区間 [a,a+1) の操作後の値を求めるinline T fetchp(ll a) { return fetch(a, a+1); }};// C++17以降の環境ではこの関数は不要 (テンプレート引数推論が働くため)template<typename T, typename U, typename JOIN_T, typename APPLY_U, typename JOIN_U, typename MULTIPLY_U, typename HALF_U>segtree<T, U, JOIN_T, APPLY_U, JOIN_U, MULTIPLY_U, HALF_U> make_segtree(const vector<T> &v, T _it, U _iu, JOIN_T _jot, APPLY_U _apu, JOIN_U _jou,MULTIPLY_U _muu, HALF_U _hau) {return segtree<T, U, JOIN_T, APPLY_U, JOIN_U, MULTIPLY_U, HALF_U>(v, _it, _iu, _jot, _apu, _jou, _muu, _hau);}// おまけconst auto SEGTREE_ASGF = [](ll, ll y) { return y; };const auto SEGTREE_EYE2 = [](ll x, ll) { return x; };const auto SEGTREE_EYE = [](ll x) { return x; };auto make_segtree_rminq(const vector<ll> &v) {auto minf = [](ll x, ll y) { return min(x, y); };return make_segtree(v, LINF, LINF, minf, SEGTREE_ASGF, SEGTREE_ASGF, SEGTREE_EYE2, SEGTREE_EYE);}auto make_segtree_rmaxq(const vector<ll> &v) {auto maxf = [](ll x, ll y) { return max(x, y); };return make_segtree(v, -LINF, -LINF, maxf, SEGTREE_ASGF, SEGTREE_ASGF, SEGTREE_EYE2, SEGTREE_EYE);}auto make_segtree_raddq(const vector<ll> &v) {auto addf = [](ll x, ll y) { return x + y; };auto hlff = [](ll x) { return x / 2; };return make_segtree(v, 0LL, 0LL, addf, addf, addf, SEGTREE_EYE2, hlff);}// [[/LIBRARY]]// 処理内容int main() {ios::sync_with_stdio(false); // stdioを使うときはコメントアウトすることcin.tie(nullptr); // インタラクティブ問題ではコメントアウトすることll n = in1;vector<ll> a = qin(n);ll ansmin = LINF, ansmax = -LINF;vector r(n, 0LL);iota(ALLOF(r), 0LL);sort(ALLOF(r), [&](ll i, ll j) {return a[i] < a[j];});{vector dummy(n, LINF);auto sgt = make_segtree_rminq(dummy);REP(i_, n) {ll i = r[n-1-i_];ll l = sgt.fetch(0, i);ll r = sgt.fetch(i+1, n);if (l < LINF && r < LINF) {ll sz = l + r + a[i];chmin(ansmin, sz);chmin(ansmax, sz);}sgt.applyp(i, a[i]);}}{vector dummy(n, LINF);auto sgt = make_segtree_rminq(dummy);REP(i_, n) {ll i = r[i_];ll l = sgt.fetch(0, i);ll r = sgt.fetch(i+1, n);if (l < LINF && r < LINF) {ll sz = l + r + a[i];chmin(ansmin, sz);chmin(ansmax, sz);}sgt.applyp(i, a[i]);}}say(ansmin == LINF ? -1 : ansmin);}