結果

問題 No.1099 Range Square Sum
ユーザー koba-e964koba-e964
提出日時 2020-06-26 21:51:20
言語 Rust
(1.77.0)
結果
WA  
実行時間 -
コード長 7,709 bytes
コンパイル時間 1,713 ms
コンパイル使用メモリ 156,540 KB
実行使用メモリ 18,132 KB
最終ジャッジ日時 2023-09-18 04:10:48
合計ジャッジ時間 6,135 ms
ジャッジサーバーID
(参考情報)
judge15 / judge13
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,376 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 AC 1 ms
4,380 KB
testcase_04 AC 1 ms
4,376 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 1 ms
4,380 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused macro definition: `input`
 --> Main.rs:7:14
  |
7 | macro_rules! input {
  |              ^^^^^
  |
  = note: `#[warn(unused_macros)]` on by default

warning: unused macro definition: `input_inner`
  --> Main.rs:23:14
   |
23 | macro_rules! input_inner {
   |              ^^^^^^^^^^^

warning: unused macro definition: `read_value`
  --> Main.rs:32:14
   |
32 | macro_rules! read_value {
   |              ^^^^^^^^^^

warning: 3 warnings emitted

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Read, Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    ($($r:tt)*) => {
        let stdin = std::io::stdin();
        let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
        let mut next = move || -> String{
            bytes
                .by_ref()
                .map(|r|r.unwrap() as char)
                .skip_while(|c|c.is_whitespace())
                .take_while(|c|!c.is_whitespace())
                .collect()
        };
        input_inner!{next, $($r)*}
    };
}

macro_rules! input_inner {
    ($next:expr) => {};
    ($next:expr, ) => {};
    ($next:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($next, $t);
        input_inner!{$next $($r)*}
    };
}

macro_rules! read_value {
    ($next:expr, [graph1; $len:expr]) => {{
        let mut g = vec![vec![]; $len];
        let ab = read_value!($next, [(usize1, usize1)]);
        for (a, b) in ab {
            g[a].push(b);
            g[b].push(a);
        }
        g
    }};
    ($next:expr, ( $($t:tt),* )) => {
        ( $(read_value!($next, $t)),* )
    };
    ($next:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
    };
    ($next:expr, chars) => {
        read_value!($next, String).chars().collect::<Vec<char>>()
    };
    ($next:expr, usize1) => (read_value!($next, usize) - 1);
    ($next:expr, [ $t:tt ]) => {{
        let len = read_value!($next, usize);
        read_value!($next, [$t; len])
    }};
    ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}

#[allow(unused)]
macro_rules! debug {
    ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
    ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}

fn get_word() -> String {
    let stdin = std::io::stdin();
    let mut stdin=stdin.lock();
    let mut u8b: [u8; 1] = [0];
    loop {
        let mut buf: Vec<u8> = Vec::with_capacity(16);
        loop {
            let res = stdin.read(&mut u8b);
            if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
                break;
            } else {
                buf.push(u8b[0]);
            }
        }
        if buf.len() >= 1 {
            let ret = String::from_utf8(buf).unwrap();
            return ret;
        }
    }
}

#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }

/**
 * Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
 * whose elements are elements of monoid T. Note that constructing this tree requires the identity
 * element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
 * Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
 * Verified by https://codeforces.com/contest/1114/submission/49759034
 */
pub trait ActionRing {
    type T: Clone + Copy; // data
    type U: Clone + Copy + PartialEq + Eq; // action
    fn biop(x: Self::T, y: Self::T) -> Self::T;
    fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;
    fn upop(fst: Self::U, snd: Self::U) -> Self::U;
    fn e() -> Self::T;
    fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
    n: usize,
    dep: usize,
    dat: Vec<R::T>,
    lazy: Vec<R::U>,
}

impl<R: ActionRing> LazySegTree<R> {
    pub fn new(n_: usize) -> Self {
        let mut n = 1;
        let mut dep = 0;
        while n < n_ { n *= 2; dep += 1; } // n is a power of 2
        LazySegTree {
            n: n,
            dep: dep,
            dat: vec![R::e(); 2 * n - 1],
            lazy: vec![R::upe(); 2 * n - 1]
        }
    }
    #[inline]
    fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
        if self.lazy[k] == R::upe() { return; }
        self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
        if k < self.n - 1 {
            self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
            self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
        }
        self.lazy[k] = R::upe(); // identity for upop
    }
    #[inline]
    fn update_node(&mut self, k: usize) {
        self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
    }
    fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
        self.lazy_evaluate_node(k, height);

        // [a,b) and  [l,r) intersects?
        if r <= a || b <= l {return;}
        if a <= l && r <= b {
            self.lazy[k] = R::upop(self.lazy[k], v);
            self.lazy_evaluate_node(k, height);
            return;
        }

        self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
        self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
        self.update_node(k);
    }
    /* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
    #[inline]
    pub fn update(&mut self, a: usize, b: usize, v: R::U) {
        let n = self.n;
        let dep = self.dep;
        self.update_sub(a, b, v, 0, dep, 0, n);
    }
    /* l,r are for simplicity */
    fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
        self.lazy_evaluate_node(k, height);

        // [a,b) and  [l,r) intersect?
        if r <= a || b <= l {return R::e();}
        if a <= l && r <= b {return self.dat[k];}
        let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
        let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
        self.update_node(k);
        R::biop(vl, vr)
    }
    /* [a, b) (note: half-inclusive) */
    #[inline]
    pub fn query(&mut self, a: usize, b: usize) -> R::T {
        let n = self.n;
        let dep = self.dep;
        self.query_sub(a, b, 0, dep, 0, n)
    }
}



enum Affine {}

impl ActionRing for Affine {
    type T = [i64; 3]; // data
    type U = i64; // action, x |-> (1 a a^2) |-> (1 a+x (a+x)^2)
    fn biop(x: Self::T, y: Self::T) -> Self::T {
        let mut z = [0; 3];
        for i in 0..3 {
            z[i] = x[i] + y[i];
        }
        z
    }
    fn update(a: Self::T, add: Self::U, height: usize) -> Self::T {
        let add = add << height;
        let mut z = a;
        z[1] += a[0] * add;
        z[2] += a[0] * add * add;
        z[2] += a[1] * 2 * add;
        z
    }
    fn upop(fst: Self::U, snd: Self::U) -> Self::U {
        fst + snd
    }
    fn e() -> Self::T {
        [1, 0, 0]
    }
    fn upe() -> Self::U { // identity for upop
        0
    }
}

fn solve() {
    let out = std::io::stdout();
    let mut out = BufWriter::new(out.lock());
    macro_rules! puts {
        ($($format:tt)*) => (let _ = write!(out,$($format)*););
    }
    let n: usize = get();
    let a: Vec<i64> = (0..n).map(|_| get()).collect();
    let mut st = LazySegTree::<Affine>::new(n);
    for i in 0..n {
        st.update(i, i + 1, a[i]);
    }
    let q: usize = get();
    for _ in 0..q {
        let ty: i32 = get();
        let l = get::<usize>() - 1;
        let r = get::<usize>();
        if ty == 1 {
            let x: i64 = get();
            st.update(l, r, x);
        } else {
            let z = st.query(l, r);
            puts!("{}\n", z[2]);
        }
    }
}

fn main() {
    // In order to avoid potential stack overflow, spawn a new thread.
    let stack_size = 104_857_600; // 100 MB
    let thd = std::thread::Builder::new().stack_size(stack_size);
    thd.spawn(|| solve()).unwrap().join().unwrap();
}
0