結果
問題 | No.1099 Range Square Sum |
ユーザー |
|
提出日時 | 2020-06-26 21:57:09 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 331 ms / 2,000 ms |
コード長 | 6,448 bytes |
コンパイル時間 | 14,227 ms |
コンパイル使用メモリ | 389,992 KB |
実行使用メモリ | 19,456 KB |
最終ジャッジ日時 | 2024-07-04 21:01:26 |
合計ジャッジ時間 | 18,689 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 30 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::{Read, Write, BufWriter};#[allow(unused)]macro_rules! debug {($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());}#[allow(unused)]macro_rules! debugln {($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());}fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}#[allow(dead_code)]fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/*** Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array* whose elements are elements of monoid T. Note that constructing this tree requires the identity* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261* Verified by https://codeforces.com/contest/1114/submission/49759034*/pub trait ActionRing {type T: Clone + Copy; // datatype U: Clone + Copy + PartialEq + Eq; // actionfn biop(x: Self::T, y: Self::T) -> Self::T;fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;fn upop(fst: Self::U, snd: Self::U) -> Self::U;fn e() -> Self::T;fn upe() -> Self::U; // identity for upop}pub struct LazySegTree<R: ActionRing> {n: usize,dep: usize,dat: Vec<R::T>,lazy: Vec<R::U>,}impl<R: ActionRing> LazySegTree<R> {pub fn new(n_: usize) -> Self {let mut n = 1;let mut dep = 0;while n < n_ { n *= 2; dep += 1; } // n is a power of 2LazySegTree {n: n,dep: dep,dat: vec![R::e(); 2 * n - 1],lazy: vec![R::upe(); 2 * n - 1]}}#[inline]fn lazy_evaluate_node(&mut self, k: usize, height: usize) {if self.lazy[k] == R::upe() { return; }self.dat[k] = R::update(self.dat[k], self.lazy[k], height);if k < self.n - 1 {self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);}self.lazy[k] = R::upe(); // identity for upop}#[inline]fn update_node(&mut self, k: usize) {self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);}fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {self.lazy_evaluate_node(k, height);// [a,b) and [l,r) intersects?if r <= a || b <= l {return;}if a <= l && r <= b {self.lazy[k] = R::upop(self.lazy[k], v);self.lazy_evaluate_node(k, height);return;}self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);self.update_node(k);}/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */#[inline]pub fn update(&mut self, a: usize, b: usize, v: R::U) {let n = self.n;let dep = self.dep;self.update_sub(a, b, v, 0, dep, 0, n);}/* l,r are for simplicity */fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {self.lazy_evaluate_node(k, height);// [a,b) and [l,r) intersect?if r <= a || b <= l {return R::e();}if a <= l && r <= b {return self.dat[k];}let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);self.update_node(k);R::biop(vl, vr)}/* [a, b) (note: half-inclusive) */#[inline]pub fn query(&mut self, a: usize, b: usize) -> R::T {let n = self.n;let dep = self.dep;self.query_sub(a, b, 0, dep, 0, n)}}enum Affine {}impl ActionRing for Affine {type T = [i64; 3]; // datatype U = (i64, i64); // action, x |-> (1 a a^2) |-> (1 a+x (a+x)^2)fn biop(x: Self::T, y: Self::T) -> Self::T {let mut z = [0; 3];for i in 0..3 {z[i] = x[i] + y[i];}z}fn update(a: Self::T, add: Self::U, height: usize) -> Self::T {let (init, add) = add;if init == 1 {let add = add;return [1 << height, add << height, add * add << height];}let mut z = a;z[1] += a[0] * add;z[2] += a[0] * add * add;z[2] += a[1] * 2 * add;z}fn upop(fst: Self::U, snd: Self::U) -> Self::U {if fst.0 == 0 && snd.0 == 0 {(0, fst.1 + snd.1)} else if snd.0 == 1 {snd} else {(1, fst.1 + snd.1)}}fn e() -> Self::T {[0, 0, 0]}fn upe() -> Self::U { // identity for upop(0, 0)}}fn solve() {let out = std::io::stdout();let mut out = BufWriter::new(out.lock());macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}let n: usize = get();let a: Vec<i64> = (0..n).map(|_| get()).collect();let mut st = LazySegTree::<Affine>::new(n);st.update(0, n, (1, 0));for i in 0..n {st.update(i, i + 1, (0, a[i]));}let q: usize = get();for _ in 0..q {let ty: i32 = get();let l = get::<usize>() - 1;let r = get::<usize>();if ty == 1 {let x: i64 = get();st.update(l, r, (0, x));} else {let z = st.query(l, r);puts!("{}\n", z[2]);}}}fn main() {// In order to avoid potential stack overflow, spawn a new thread.let stack_size = 104_857_600; // 100 MBlet thd = std::thread::Builder::new().stack_size(stack_size);thd.spawn(|| solve()).unwrap().join().unwrap();}