結果

問題 No.1099 Range Square Sum
ユーザー koba-e964koba-e964
提出日時 2020-06-26 21:57:09
言語 Rust
(1.72.1)
結果
AC  
実行時間 328 ms / 2,000 ms
コード長 6,448 bytes
コンパイル時間 1,141 ms
コンパイル使用メモリ 158,176 KB
実行使用メモリ 20,416 KB
最終ジャッジ日時 2023-09-18 04:24:52
合計ジャッジ時間 5,891 ms
ジャッジサーバーID
(参考情報)
judge14 / judge12
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
4,380 KB
testcase_01 AC 1 ms
4,376 KB
testcase_02 AC 1 ms
4,376 KB
testcase_03 AC 1 ms
4,380 KB
testcase_04 AC 1 ms
4,380 KB
testcase_05 AC 1 ms
4,376 KB
testcase_06 AC 1 ms
4,376 KB
testcase_07 AC 1 ms
4,376 KB
testcase_08 AC 1 ms
4,376 KB
testcase_09 AC 1 ms
4,380 KB
testcase_10 AC 1 ms
4,376 KB
testcase_11 AC 2 ms
4,380 KB
testcase_12 AC 2 ms
4,380 KB
testcase_13 AC 3 ms
4,380 KB
testcase_14 AC 3 ms
4,380 KB
testcase_15 AC 2 ms
4,380 KB
testcase_16 AC 2 ms
4,376 KB
testcase_17 AC 2 ms
4,376 KB
testcase_18 AC 3 ms
4,376 KB
testcase_19 AC 3 ms
4,376 KB
testcase_20 AC 2 ms
4,380 KB
testcase_21 AC 328 ms
19,764 KB
testcase_22 AC 327 ms
19,596 KB
testcase_23 AC 324 ms
19,696 KB
testcase_24 AC 326 ms
20,416 KB
testcase_25 AC 325 ms
20,400 KB
testcase_26 AC 246 ms
19,760 KB
testcase_27 AC 249 ms
19,924 KB
testcase_28 AC 248 ms
20,404 KB
testcase_29 AC 247 ms
19,516 KB
testcase_30 AC 249 ms
19,608 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Read, Write, BufWriter};

#[allow(unused)]
macro_rules! debug {
    ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
    ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}

fn get_word() -> String {
    let stdin = std::io::stdin();
    let mut stdin=stdin.lock();
    let mut u8b: [u8; 1] = [0];
    loop {
        let mut buf: Vec<u8> = Vec::with_capacity(16);
        loop {
            let res = stdin.read(&mut u8b);
            if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
                break;
            } else {
                buf.push(u8b[0]);
            }
        }
        if buf.len() >= 1 {
            let ret = String::from_utf8(buf).unwrap();
            return ret;
        }
    }
}

#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }

/**
 * Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
 * whose elements are elements of monoid T. Note that constructing this tree requires the identity
 * element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
 * Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
 * Verified by https://codeforces.com/contest/1114/submission/49759034
 */
pub trait ActionRing {
    type T: Clone + Copy; // data
    type U: Clone + Copy + PartialEq + Eq; // action
    fn biop(x: Self::T, y: Self::T) -> Self::T;
    fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;
    fn upop(fst: Self::U, snd: Self::U) -> Self::U;
    fn e() -> Self::T;
    fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
    n: usize,
    dep: usize,
    dat: Vec<R::T>,
    lazy: Vec<R::U>,
}

impl<R: ActionRing> LazySegTree<R> {
    pub fn new(n_: usize) -> Self {
        let mut n = 1;
        let mut dep = 0;
        while n < n_ { n *= 2; dep += 1; } // n is a power of 2
        LazySegTree {
            n: n,
            dep: dep,
            dat: vec![R::e(); 2 * n - 1],
            lazy: vec![R::upe(); 2 * n - 1]
        }
    }
    #[inline]
    fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
        if self.lazy[k] == R::upe() { return; }
        self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
        if k < self.n - 1 {
            self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
            self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
        }
        self.lazy[k] = R::upe(); // identity for upop
    }
    #[inline]
    fn update_node(&mut self, k: usize) {
        self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
    }
    fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
        self.lazy_evaluate_node(k, height);

        // [a,b) and  [l,r) intersects?
        if r <= a || b <= l {return;}
        if a <= l && r <= b {
            self.lazy[k] = R::upop(self.lazy[k], v);
            self.lazy_evaluate_node(k, height);
            return;
        }

        self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
        self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
        self.update_node(k);
    }
    /* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
    #[inline]
    pub fn update(&mut self, a: usize, b: usize, v: R::U) {
        let n = self.n;
        let dep = self.dep;
        self.update_sub(a, b, v, 0, dep, 0, n);
    }
    /* l,r are for simplicity */
    fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
        self.lazy_evaluate_node(k, height);

        // [a,b) and  [l,r) intersect?
        if r <= a || b <= l {return R::e();}
        if a <= l && r <= b {return self.dat[k];}
        let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
        let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
        self.update_node(k);
        R::biop(vl, vr)
    }
    /* [a, b) (note: half-inclusive) */
    #[inline]
    pub fn query(&mut self, a: usize, b: usize) -> R::T {
        let n = self.n;
        let dep = self.dep;
        self.query_sub(a, b, 0, dep, 0, n)
    }
}



enum Affine {}

impl ActionRing for Affine {
    type T = [i64; 3]; // data
    type U = (i64, i64); // action, x |-> (1 a a^2) |-> (1 a+x (a+x)^2)
    fn biop(x: Self::T, y: Self::T) -> Self::T {
        let mut z = [0; 3];
        for i in 0..3 {
            z[i] = x[i] + y[i];
        }
        z
    }
    fn update(a: Self::T, add: Self::U, height: usize) -> Self::T {
        let (init, add) = add;
        if init == 1 {
            let add = add;
            return [1 << height, add << height, add * add << height];
        }
        let mut z = a;
        z[1] += a[0] * add;
        z[2] += a[0] * add * add;
        z[2] += a[1] * 2 * add;
        z
    }
    fn upop(fst: Self::U, snd: Self::U) -> Self::U {
        if fst.0 == 0 && snd.0 == 0 {
            (0, fst.1 + snd.1)
        } else if snd.0 == 1 {
            snd
        } else {
            (1, fst.1 + snd.1)
        }
    }
    fn e() -> Self::T {
        [0, 0, 0]
    }
    fn upe() -> Self::U { // identity for upop
        (0, 0)
    }
}

fn solve() {
    let out = std::io::stdout();
    let mut out = BufWriter::new(out.lock());
    macro_rules! puts {
        ($($format:tt)*) => (let _ = write!(out,$($format)*););
    }
    let n: usize = get();
    let a: Vec<i64> = (0..n).map(|_| get()).collect();
    let mut st = LazySegTree::<Affine>::new(n);
    st.update(0, n, (1, 0));
    for i in 0..n {
        st.update(i, i + 1, (0, a[i]));
    }
    let q: usize = get();
    for _ in 0..q {
        let ty: i32 = get();
        let l = get::<usize>() - 1;
        let r = get::<usize>();
        if ty == 1 {
            let x: i64 = get();
            st.update(l, r, (0, x));
        } else {
            let z = st.query(l, r);
            puts!("{}\n", z[2]);
        }
    }
}

fn main() {
    // In order to avoid potential stack overflow, spawn a new thread.
    let stack_size = 104_857_600; // 100 MB
    let thd = std::thread::Builder::new().stack_size(stack_size);
    thd.spawn(|| solve()).unwrap().join().unwrap();
}
0