結果

問題 No.1100 Boxes
ユーザー LayCurse
提出日時 2020-06-26 22:04:17
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 56 ms / 2,000 ms
コード長 18,974 bytes
コンパイル時間 3,039 ms
コンパイル使用メモリ 229,100 KB
最終ジャッジ日時 2025-01-11 11:29:44
ジャッジサーバーID
(参考情報)
judge3 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (998244353U)
#define MD_PRIMITIVE_ROOT (3U)
#define PI 3.14159265358979323846
void *wmem;
char memarr[96000000];
template<class S, class T> inline S max_L(S a,T b){
return a>=b?a:b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T, class S> inline T pow_L(T a, S b){
T res = 1;
res = 1;
for(;;){
if(b&1){
res *= a;
}
b >>= 1;
if(b==0){
break;
}
a *= a;
}
return res;
}
inline double pow_L(double a, double b){
return pow(a,b);
}
template<class S, class T> inline S chmax(S &a, T b){
if(a<b){
a=b;
}
return a;
}
template<class T> struct Comb{
int mem_fact;
T *factri;
T *ifactri;
Comb(){
mem_fact = 0;
}
inline void expand_fact(int k){
if(k <= mem_fact){
return;
}
chmax(k, 2* mem_fact);
if(mem_fact == 0){
int i;
factri = (T*)malloc(k * sizeof(T));
ifactri = (T*)malloc(k * sizeof(T));
factri[0] = 1;
for(i=(1);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(0);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
else{
int i;
factri = (T*)realloc(factri, k * sizeof(T));
ifactri = (T*)realloc(ifactri, k * sizeof(T));
for(i=(mem_fact);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(mem_fact);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
mem_fact = k;
}
inline T fac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return factri[k];
}
inline T ifac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return ifactri[k];
}
inline T C(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[b] * ifactri[a-b];
}
inline T P(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[a-b];
}
inline T H(int a, int b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
if(mem_fact < a+b){
expand_fact(a+b);
}
return C(a+b-1, b);
}
inline T Multinomial(int sz, int a[]){
int i;
int s = 0;
T res;
for(i=(0);i<(sz);i++){
s += a[i];
}
if(mem_fact < s+1){
expand_fact(s+1);
}
res = factri[s];
for(i=(0);i<(sz);i++){
res *= ifactri[a[i]];
}
return 1;
}
inline T Multinomial(int a){
return 1;
}
inline T Multinomial(int a, int b){
if(mem_fact < a+b+1){
expand_fact(a+b+1);
}
return factri[a+b] * ifactri[a] * ifactri[b];
}
inline T Multinomial(int a, int b, int c){
if(mem_fact < a+b+c+1){
expand_fact(a+b+c+1);
}
return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
}
inline T Multinomial(int a, int b, int c, int d){
if(mem_fact < a+b+c+d+1){
expand_fact(a+b+c+d+1);
}
return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
}
inline T Catalan(int n){
if(n < 0){
return 0;
}
if(mem_fact < 2*n+1){
expand_fact(2*n+1);
}
return factri[2*n] * ifactri[n] * ifactri[n+1];
}
inline T C_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
res /= i + 1;
}
return res;
}
inline T P_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
}
return res;
}
inline T per_s(long long n, long long k){
T d;
int m;
if(n < 0 || k < 0){
return 0;
}
if(n == k && k == 0){
return 1;
}
if(n == 0 || k == 0){
return 0;
}
if(k==1){
return 1;
}
if(k==2){
d = n / 2;
return d;
}
if(k==3){
d = (n-1) / 6;
m = (n-1) % 6;
if(m==0){
return 3 * d * d + d;
}
if(m==1){
return 3 * d * d + 2 * d;
}
if(m==2){
return 3 * d * d + 3 * d + 1;
}
if(m==3){
return 3 * d * d + 4 * d + 1;
}
if(m==4){
return 3 * d * d + 5 * d + 2;
}
if(m==5){
return 3 * d * d + 6 * d + 3;
}
}
assert(0 && "per_s should be k <= 3");
return -1;
}
}
;
struct fft_pnt{
double x;
double y;
fft_pnt(void){
}
fft_pnt(double a, double b){
x = a;
y = b;
}
void set(double a, double b){
x = a;
y = b;
}
fft_pnt& operator+=(fft_pnt a){
x+=a.x;
y+=a.y;
return *this;
}
fft_pnt& operator-=(fft_pnt a){
x-=a.x;
y-=a.y;
return *this;
}
fft_pnt& operator*=(fft_pnt a){
fft_pnt p = *this;
x = p.x*a.x-p.y*a.y;
y = p.x*a.y+p.y*a.x;
return *this;
}
fft_pnt operator+(fft_pnt a){
return fft_pnt(*this) += a;
}
fft_pnt operator-(fft_pnt a){
return fft_pnt(*this) -= a;
}
fft_pnt operator*(fft_pnt a){
return fft_pnt(*this) *= a;
}
}
;
void fft_L(int n, fft_pnt x[], void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
double theta = 2*PI / n;
double tmp;
fft_pnt w1;
fft_pnt w2;
fft_pnt w3;
fft_pnt a;
fft_pnt b;
fft_pnt c;
fft_pnt d;
fft_pnt aa;
fft_pnt bb;
fft_pnt cc;
fft_pnt dd;
fft_pnt *y = (fft_pnt*)mem;
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
for(i=(0);i<(n1);i++){
w1 = fft_pnt(cos(i*theta),-sin(i*theta));
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = b - d;
tmp = dd.y;
dd.y = dd.x;
dd.x = -tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb - dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb + dd);
}
}
n /= 4;
step *= 4;
theta *= 4;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
theta *= 2;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void fftinv_L(int n, fft_pnt x[], void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
double theta = 2*PI / n;
double tmp;
fft_pnt w1;
fft_pnt w2;
fft_pnt w3;
fft_pnt a;
fft_pnt b;
fft_pnt c;
fft_pnt d;
fft_pnt aa;
fft_pnt bb;
fft_pnt cc;
fft_pnt dd;
fft_pnt *y = (fft_pnt*)mem;
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
for(i=(0);i<(n1);i++){
w1 = fft_pnt(cos(i*theta),sin(i*theta));
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = b - d;
tmp = dd.y;
dd.y = dd.x;
dd.x = -tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb + dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb - dd);
}
}
n /= 4;
step *= 4;
theta *= 4;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
theta *= 2;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void convolution_L(double A[], int As, double B[], int Bs, double res[], int Rs, void *mem = wmem){
int i;
int n;
int n2;
double mul;
fft_pnt *a;
fft_pnt *b;
n =max_L(As+Bs, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
walloc1d(&b, n2, &mem);
for(i=(0);i<(As);i++){
a[i].set(A[i], 0);
}
int jG1yfsum = n2;
for(i=(As);i<(jG1yfsum);i++){
a[i].set(0,0);
}
for(i=(0);i<(Bs);i++){
b[i].set(B[i], 0);
}
int grBCmONb = n2;
for(i=(Bs);i<(grBCmONb);i++){
b[i].set(0,0);
}
fft_L(n2, a, mem);
fft_L(n2, b, mem);
for(i=(0);i<(n2);i++){
a[i] *= b[i];
}
fftinv_L(n2, a, mem);
mul = 1.0 / n2;
for(i=(0);i<(Rs);i++){
res[i] = a[i].x * mul;
}
}
void convolution_L(double A[], int As, double res[], int Rs, void *mem = wmem){
int i;
int n;
int n2;
double mul;
fft_pnt *a;
n =max_L(As+As, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
for(i=(0);i<(As);i++){
a[i].set(A[i], 0);
}
int memzHCbB = n2;
for(i=(As);i<(memzHCbB);i++){
a[i].set(0,0);
}
fft_L(n2, a, mem);
for(i=(0);i<(n2);i++){
a[i] *= a[i];
}
fftinv_L(n2, a, mem);
mul = 1.0 / n2;
for(i=(0);i<(Rs);i++){
res[i] = a[i].x * mul;
}
}
void fft_L(int n, Modint x[], Modint root, void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
Modint w1;
Modint w2;
Modint w3;
Modint a;
Modint b;
Modint c;
Modint d;
Modint aa;
Modint bb;
Modint cc;
Modint dd;
Modint tmp;
Modint *y;
walloc1d(&y, n, &mem);
tmp = root.pw((MD-1)/4*3);
root = root.pw((MD-1)/n);
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
w1.val = 1;
for(i=(0);i<(n1);i++){
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = (b - d) * tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb - dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb + dd);
}
w1 *= root;
}
n /= 4;
step *= 4;
root *= root;
root *= root;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
root *= root;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void fftinv_L(int n, Modint x[], Modint root, void *mem){
int i;
int j;
int n1;
int n2;
int n3;
int step = 1;
Modint w1;
Modint w2;
Modint w3;
Modint a;
Modint b;
Modint c;
Modint d;
Modint aa;
Modint bb;
Modint cc;
Modint dd;
Modint tmp;
Modint *y;
walloc1d(&y, n, &mem);
root = root.inverse();
tmp = root.pw((MD-1)/4);
root = root.pw((MD-1)/n);
while(n > 2){
n1 = n / 4;
n2 = n1 + n1;
n3 = n1 + n2;
w1.val = 1;
for(i=(0);i<(n1);i++){
w2 = w1*w1;
w3 = w1*w2;
for(j=(0);j<(step);j++){
a = x[j+step*i];
b = x[j+step*(i+n1)];
c = x[j+step*(i+n2)];
d = x[j+step*(i+n3)];
aa = a + c;
bb = a - c;
cc = b + d;
dd = (b - d) * tmp;
y[j+step*(4*i )] = aa + cc;
y[j+step*(4*i+1)] = w1*(bb + dd);
y[j+step*(4*i+2)] = w2*(aa - cc);
y[j+step*(4*i+3)] = w3*(bb - dd);
}
w1 *= root;
}
n /= 4;
step *= 4;
root *= root;
root *= root;
swap(x,y);
}
if(n==2){
for(i=(0);i<(step);i++){
y[i] = x[i] + x[i+step];
y[i+step] = x[i] - x[i+step];
}
n /= 2;
step *= 2;
root *= root;
swap(x,y);
}
for(i=(0);i<(step);i++){
y[i] = x[i];
}
}
void convolution_L(Modint A[], int As, Modint B[], int Bs, Modint res[], int Rs, Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
int i;
int n;
int n2;
Modint *a;
Modint *b;
Modint r;
n =max_L(As+Bs, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
walloc1d(&b, n2, &mem);
for(i=(0);i<(As);i++){
a[i] = A[i];
}
int rv4PtiIc = n2;
for(i=(As);i<(rv4PtiIc);i++){
a[i].val = 0;
}
for(i=(0);i<(Bs);i++){
b[i] = B[i];
}
int emd5LSgV = n2;
for(i=(Bs);i<(emd5LSgV);i++){
b[i].val = 0;
}
fft_L(n2, a, root, mem);
fft_L(n2, b, root, mem);
for(i=(0);i<(n2);i++){
a[i] *= b[i];
}
fftinv_L(n2, a, root, mem);
r = Modint(n2).inverse();
for(i=(0);i<(Rs);i++){
res[i] = a[i] * r;
}
}
void convolution_L(Modint A[], int As, Modint res[], int Rs, Modint root = MD_PRIMITIVE_ROOT, void *mem = wmem){
int i;
int n;
int n2;
Modint *a;
Modint r;
n =max_L(2*As, Rs);
for(n2=1;n2<n;n2*=2){
;
}
walloc1d(&a, n2, &mem);
for(i=(0);i<(As);i++){
a[i] = A[i];
}
int IyTJmJ0I = n2;
for(i=(As);i<(IyTJmJ0I);i++){
a[i].val = 0;
}
fft_L(n2, a, root, mem);
for(i=(0);i<(n2);i++){
a[i] *= a[i];
}
fftinv_L(n2, a, root, mem);
r = Modint(n2).inverse();
for(i=(0);i<(Rs);i++){
res[i] = a[i]*r;
}
}
int N;
int K;
Modint x[100000+2];
Modint y[100000+2];
Modint z[100000+2];
int main(){
int i;
wmem = memarr;
Modint res = 0;
Comb<Modint> c;
rd(N);
rd(K);
for(i=(0);i<(100000+2);i++){
x[i] = ((pow_L((Modint(i)),N))) * c.ifac(i);
y[i] = c.ifac(i);
if(i%2){
y[i] = -y[i];
}
}
convolution_L(x,100000+2,y,100000+2,z,100000+2);
for(i=(0);i<(K+1);i++){
if((K-i)%2){
res += c.C(K,i) * z[i] * c.fac(i);
}
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20200509-1
// --- original code ---
// #define MD 998244353
// int N, K;
// Modint x[1d5+2], y[1d5+2], z[1d5+2];
// {
// Modint res = 0;
// Comb<Modint> c;
// rd(N,K);
// rep(i,1d5+2){
// x[i] = ((Modint(i)) ** N) * c.ifac(i);
// y[i] = c.ifac(i);
// if(i%2) y[i] = -y[i];
// }
// convolution(x,1d5+2,y,1d5+2,z,1d5+2);
// rep(i,K+1) if((K-i)%2) res += c.C(K,i) * z[i] * c.fac(i);
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0