結果

問題 No.1100 Boxes
ユーザー uwiuwi
提出日時 2020-06-26 22:19:08
言語 Java21
(openjdk 21)
結果
AC  
実行時間 356 ms / 2,000 ms
コード長 12,408 bytes
コンパイル時間 6,668 ms
コンパイル使用メモリ 89,604 KB
実行使用メモリ 63,356 KB
最終ジャッジ日時 2024-07-04 22:00:58
合計ジャッジ時間 12,436 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 52 ms
50,196 KB
testcase_01 AC 52 ms
50,304 KB
testcase_02 AC 54 ms
50,000 KB
testcase_03 AC 55 ms
50,084 KB
testcase_04 AC 53 ms
50,112 KB
testcase_05 AC 53 ms
50,056 KB
testcase_06 AC 52 ms
50,080 KB
testcase_07 AC 53 ms
50,368 KB
testcase_08 AC 53 ms
50,044 KB
testcase_09 AC 51 ms
50,088 KB
testcase_10 AC 52 ms
50,136 KB
testcase_11 AC 52 ms
50,132 KB
testcase_12 AC 53 ms
50,120 KB
testcase_13 AC 53 ms
50,068 KB
testcase_14 AC 52 ms
50,296 KB
testcase_15 AC 53 ms
50,196 KB
testcase_16 AC 52 ms
50,140 KB
testcase_17 AC 77 ms
51,256 KB
testcase_18 AC 77 ms
51,280 KB
testcase_19 AC 93 ms
51,616 KB
testcase_20 AC 135 ms
55,216 KB
testcase_21 AC 220 ms
58,836 KB
testcase_22 AC 320 ms
63,040 KB
testcase_23 AC 267 ms
59,008 KB
testcase_24 AC 272 ms
61,168 KB
testcase_25 AC 247 ms
59,112 KB
testcase_26 AC 335 ms
62,976 KB
testcase_27 AC 347 ms
63,040 KB
testcase_28 AC 176 ms
56,080 KB
testcase_29 AC 336 ms
63,040 KB
testcase_30 AC 342 ms
63,084 KB
testcase_31 AC 199 ms
55,772 KB
testcase_32 AC 312 ms
58,624 KB
testcase_33 AC 356 ms
63,260 KB
testcase_34 AC 346 ms
63,292 KB
testcase_35 AC 52 ms
50,340 KB
testcase_36 AC 303 ms
63,104 KB
testcase_37 AC 52 ms
49,972 KB
testcase_38 AC 252 ms
60,968 KB
testcase_39 AC 345 ms
63,356 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package contest200626;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;

public class F {
	InputStream is;
	PrintWriter out;
	String INPUT = "";
	
	void solve()
	{
//		for(int k = 1;k <= 5;k++){
//			for(int n = 1;n <= 10;n++){
//				tr(k, n, f(k, n));
//			}
//		}
		// i:odd
		// C(k, i) * ((k-i)^n - (K-i)(K-i-1)^n + C(K-i,2)(K-i-2)^n+...)
		
		// C(3,1)*(2^n - 2*1^n + 0^n)
		// C(3,3)*(0^n)
		
		// 4 -6 3
		
		// t^n * sum_{d=0~k-t, t+d:odd} (-1)^d * C(t+d, t) * C(k, t+d)
		// (t+d)!/t!/d!*k!/(t+d)!/(k-t-d)!
		// 1/t!/d!*k!/(k-t-d)!
		// k!/t! * 1/d!/(k-t-d)!
		
		// 6*(1/6+1/2) = 4
		
		int n = ni(), K = ni();
		int mod = 998244353;
		
		int[][] fif = enumFIF(K+1, mod);
		
		long ans = 0;
		{
			long[] a = new long[K+1];
			for(int i = 0;i < K+1;i+=2){
				a[i] = fif[1][i];
			}
			long[] b = new long[K+1];
			for(int i = 0;i < K+1;i+=2){
				b[K-i] = fif[1][K-i];
			}
			long[] ab = convoluteSimply(a, b, mod, 3);
			for(int t = 0;t < K;t+=2){
				long base = (long)fif[0][K] * fif[1][t] % mod * ab[K-t] % mod;
//				tr(t, base , ab[K-t], pow(t, n, mod), pow(t, n, mod) * base % mod);
				ans += pow(t, n, mod) * base;
				ans %= mod;
			}
		}
		{
			long[] a = new long[K+1];
			for(int i = 0;i < K+1;i+=2){
				a[i] = fif[1][i];
			}
			long[] b = new long[K+1];
			for(int i = 1;i < K+1;i+=2){
				b[K-i] = fif[1][K-i];
			}
			long[] ab = convoluteSimply(a, b, mod, 3);
			for(int t = 1;t < K;t+=2){
				long base = (long)fif[0][K] * fif[1][t] % mod * ab[K-t] % mod;
//				tr(t, base , ab[K-t], pow(t, n, mod), pow(t, n, mod) * base % mod);
				ans -= pow(t, n, mod) * base;
				ans %= mod;
			}
			if(ans < 0)ans += mod;
		}
		if(K % 2 == 0){
			ans = mod-ans;
			ans %= mod;
		}
		out.println(ans);
	}
	
	public static long C(int n, int r, int mod, int[][] fif) {
		if (n < 0 || r < 0 || r > n)
			return 0;
		return (long) fif[0][n] * fif[1][r] % mod * fif[1][n - r] % mod;
	}

	
	
	public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681};
	public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17};
//	public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033};
//	public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};
	
	public static long[] convoluteSimply(long[] a, long[] b, int P, int g)
	{
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
		long[] fa = nttmb(a, m, false, P, g);
		long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
		for(int i = 0;i < m;i++){
			fa[i] = fa[i]*fb[i]%P;
		}
		return nttmb(fa, m, true, P, g);
	}
	
	public static long[] convolute(long[] a, long[] b)
	{
		int USE = 2;
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
		long[][] fs = new long[USE][];
		for(int k = 0;k < USE;k++){
			int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
			long[] fa = nttmb(a, m, false, P, g);
			long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
			for(int i = 0;i < m;i++){
				fa[i] = fa[i]*fb[i]%P;
			}
			fs[k] = nttmb(fa, m, true, P, g);
		}
		
		int[] mods = Arrays.copyOf(NTTPrimes, USE);
		long[] gammas = garnerPrepare(mods);
		int[] buf = new int[USE];
		for(int i = 0;i < fs[0].length;i++){
			for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
			long[] res = garnerBatch(buf, mods, gammas);
			long ret = 0;
			for(int j = res.length-1;j >= 0;j--)ret = ret * mods[j] + res[j];
			fs[0][i] = ret;
		}
		return fs[0];
	}
	
	public static long[] convolute(long[] a, long[] b, int USE, int mod)
	{
		int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
		long[][] fs = new long[USE][];
		for(int k = 0;k < USE;k++){
			int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
			long[] fa = nttmb(a, m, false, P, g);
			long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
			for(int i = 0;i < m;i++){
				fa[i] = fa[i]*fb[i]%P;
			}
			fs[k] = nttmb(fa, m, true, P, g);
		}
		
		int[] mods = Arrays.copyOf(NTTPrimes, USE);
		long[] gammas = garnerPrepare(mods);
		int[] buf = new int[USE];
		for(int i = 0;i < fs[0].length;i++){
			for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
			long[] res = garnerBatch(buf, mods, gammas);
			long ret = 0;
			for(int j = res.length-1;j >= 0;j--)ret = (ret * mods[j] + res[j]) % mod;
			fs[0][i] = ret;
		}
		return fs[0];
	}
	
	// static int[] wws = new int[270000]; // outer faster
	
	public static long invl(long a, long mod) {
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		return p < 0 ? p + mod : p;
	}

	
	// Modifed Montgomery + Barrett
	private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g)
	{
		long[] dst = Arrays.copyOf(src, n);
		
		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P)<<1;
		int H = Long.numberOfTrailingZeros(K)*2;
		long M = K*K/P;
		
		int[] wws = new int[1<<h-1];
		long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
		long w = (1L<<32)%P;
		for(int k = 0;k < 1<<h-1;k++){
			wws[k] = (int)w;
			w = modh(w*dw, M, H, P);
		}
		long J = invl(P, 1L<<32);
		for(int i = 0;i < h;i++){
			for(int j = 0;j < 1<<i;j++){
				for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
					long u = (dst[s] - dst[t] + 2*P)*wws[k];
					dst[s] += dst[t];
					if(dst[s] >= 2*P)dst[s] -= 2*P;
//					long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;
					long Q = (u<<32)*J>>>32;
					dst[t] = (u>>>32)-(Q*P>>>32)+P;
				}
			}
			if(i < h-1){
				for(int k = 0;k < 1<<h-i-2;k++)wws[k] = wws[k*2];
			}
		}
		for(int i = 0;i < n;i++){
			if(dst[i] >= P)dst[i] -= P;
		}
		for(int i = 0;i < n;i++){
			int rev = Integer.reverse(i)>>>-h;
			if(i < rev){
				long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
			}
		}
		
		if(inverse){
			long in = invl(n, P);
			for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P);
		}
		
		return dst;
	}
	
	// Modified Shoup + Barrett
	private static long[] nttsb(long[] src, int n, boolean inverse, int P, int g)
	{
		long[] dst = Arrays.copyOf(src, n);
		
		int h = Integer.numberOfTrailingZeros(n);
		long K = Integer.highestOneBit(P)<<1;
		int H = Long.numberOfTrailingZeros(K)*2;
		long M = K*K/P;
		
		long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
		long[] wws = new long[1<<h-1];
		long[] ws = new long[1<<h-1];
		long w = 1;
		for(int k = 0;k < 1<<h-1;k++){
			wws[k] = (w<<32)/P;
			ws[k] = w;
			w = modh(w*dw, M, H, P);
		}
		for(int i = 0;i < h;i++){
			for(int j = 0;j < 1<<i;j++){
				for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
					long ndsts = dst[s] + dst[t];
					if(ndsts >= 2*P)ndsts -= 2*P;
					long T = dst[s] - dst[t] + 2*P;
					long Q = wws[k]*T>>>32;
					dst[s] = ndsts;
					dst[t] = ws[k]*T-Q*P&(1L<<32)-1;
				}
			}
//			dw = dw * dw % P;
			if(i < h-1){
				for(int k = 0;k < 1<<h-i-2;k++){
					wws[k] = wws[k*2];
					ws[k] = ws[k*2];
				}
			}
		}
		for(int i = 0;i < n;i++){
			if(dst[i] >= P)dst[i] -= P;
		}
		for(int i = 0;i < n;i++){
			int rev = Integer.reverse(i)>>>-h;
			if(i < rev){
				long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
			}
		}
		
		if(inverse){
			long in = invl(n, P);
			for(int i = 0;i < n;i++){
				dst[i] = modh(dst[i] * in, M, H, P);
			}
		}
		
		return dst;
	}
	
	static final long mask = (1L<<31)-1;
	
	public static long modh(long a, long M, int h, int mod)
	{
		long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod;
		return r < mod ? r : r-mod;
	}
	
	private static long[] garnerPrepare(int[] m)
	{
		int n = m.length;
		assert n == m.length;
		if(n == 0)return new long[0];
		long[] gamma = new long[n];
		for(int k = 1;k < n;k++){
			long prod = 1;
			for(int i = 0;i < k;i++){
				prod = prod * m[i] % m[k];
			}
			gamma[k] = invl(prod, m[k]);
		}
		return gamma;
	}
	
	private static long[] garnerBatch(int[] u, int[] m, long[] gamma)
	{
		int n = u.length;
		assert n == m.length;
		long[] v = new long[n];
		v[0] = u[0];
		for(int k = 1;k < n;k++){
			long temp = v[k-1];
			for(int j = k-2;j >= 0;j--){
				temp = (temp * m[j] + v[j]) % m[k];
			}
			v[k] = (u[k] - temp) * gamma[k] % m[k];
			if(v[k] < 0)v[k] += m[k];
		}
		return v;
	}
	

	
	public static int[][] enumFIF(int n, int mod) {
		int[] f = new int[n + 1];
		int[] invf = new int[n + 1];
		f[0] = 1;
		for (int i = 1; i <= n; i++) {
			f[i] = (int) ((long) f[i - 1] * i % mod);
		}
		long a = f[n];
		long b = mod;
		long p = 1, q = 0;
		while (b > 0) {
			long c = a / b;
			long d;
			d = a;
			a = b;
			b = d % b;
			d = p;
			p = q;
			q = d - c * q;
		}
		invf[n] = (int) (p < 0 ? p + mod : p);
		for (int i = n - 1; i >= 0; i--) {
			invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
		}
		return new int[][] { f, invf };
	}

	
	int mod = 998244353;
	
	long f(int k, int n)
	{
		long[][] C = new long[k + 1][k + 1];
		for (int i = 0; i <= k; i++) {
			C[i][0] = 1;
			for (int j = 1; j <= i; j++) {
				C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
				if (C[i][j] >= mod)
					C[i][j] -= mod;
			}
		}

		long v = 0;
		for(int i = k, sg = 1;i >= 0;i--, sg = -sg){
			v += pow(i, n, mod) * C[k][i] * sg;
		}
		v %= mod;
		if(v < 0)v += mod;
		return v;
	}
	
	public static long pow(long a, long n, long mod) {
		//		a %= mod;
		long ret = 1;
		int x = 63 - Long.numberOfLeadingZeros(n);
		for (; x >= 0; x--) {
			ret = ret * ret % mod;
			if (n << 63 - x < 0)
				ret = ret * a % mod;
		}
		return ret;
	}

	
	void run() throws Exception
	{
		is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
		out = new PrintWriter(System.out);
		
		long s = System.currentTimeMillis();
		solve();
		out.flush();
		if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
//		Thread t = new Thread(null, null, "~", Runtime.getRuntime().maxMemory()){
//			@Override
//			public void run() {
//				long s = System.currentTimeMillis();
//				solve();
//				out.flush();
//				if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
//			}
//		};
//		t.start();
//		t.join();
	}
	
	public static void main(String[] args) throws Exception { new F().run(); }
	
	private byte[] inbuf = new byte[1024];
	public int lenbuf = 0, ptrbuf = 0;
	
	private int readByte()
	{
		if(lenbuf == -1)throw new InputMismatchException();
		if(ptrbuf >= lenbuf){
			ptrbuf = 0;
			try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
			if(lenbuf <= 0)return -1;
		}
		return inbuf[ptrbuf++];
	}
	
	private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
	private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
	
	private double nd() { return Double.parseDouble(ns()); }
	private char nc() { return (char)skip(); }
	
	private String ns()
	{
		int b = skip();
		StringBuilder sb = new StringBuilder();
		while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
			sb.appendCodePoint(b);
			b = readByte();
		}
		return sb.toString();
	}
	
	private char[] ns(int n)
	{
		char[] buf = new char[n];
		int b = skip(), p = 0;
		while(p < n && !(isSpaceChar(b))){
			buf[p++] = (char)b;
			b = readByte();
		}
		return n == p ? buf : Arrays.copyOf(buf, p);
	}
	
	private int[] na(int n)
	{
		int[] a = new int[n];
		for(int i = 0;i < n;i++)a[i] = ni();
		return a;
	}
	
	private long[] nal(int n)
	{
		long[] a = new long[n];
		for(int i = 0;i < n;i++)a[i] = nl();
		return a;
	}
	
	private char[][] nm(int n, int m) {
		char[][] map = new char[n][];
		for(int i = 0;i < n;i++)map[i] = ns(m);
		return map;
	}
	
	private int[][] nmi(int n, int m) {
		int[][] map = new int[n][];
		for(int i = 0;i < n;i++)map[i] = na(m);
		return map;
	}
	
	private int ni() { return (int)nl(); }
	
	private long nl()
	{
		long num = 0;
		int b;
		boolean minus = false;
		while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
		if(b == '-'){
			minus = true;
			b = readByte();
		}
		
		while(true){
			if(b >= '0' && b <= '9'){
				num = num * 10 + (b - '0');
			}else{
				return minus ? -num : num;
			}
			b = readByte();
		}
	}
	
	private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
0