結果
| 問題 |
No.1099 Range Square Sum
|
| コンテスト | |
| ユーザー |
jell
|
| 提出日時 | 2020-06-26 22:27:27 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 225 ms / 2,000 ms |
| コード長 | 18,577 bytes |
| コンパイル時間 | 2,790 ms |
| コンパイル使用メモリ | 229,160 KB |
| 最終ジャッジ日時 | 2025-01-11 11:48:40 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 30 |
ソースコード
#pragma region preprocessor
#ifdef LOCAL
//*
#define _GLIBCXX_DEBUG // gcc
/*/
#define _LIBCPP_DEBUG 0 // clang
//*/
// #define __buffer_check__
#else
#pragma GCC optimize("Ofast")
// #define NDEBUG
#endif
#define __precision__ 15
#define __iostream_untie__ true
#include <bits/stdc++.h>
#include <ext/rope>
#ifdef LOCAL
#include "dump.hpp"
#define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n"
#else
#define dump(...) ((void)0)
#define mesg(str) ((void)0)
#endif
#pragma endregion
#pragma region std-overload
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#pragma endregion
#pragma region config
namespace config
{
const auto start_time{std::chrono::system_clock::now()};
int64_t elapsed_time()
{
using namespace std::chrono;
const auto end_time{std::chrono::system_clock::now()};
return duration_cast<milliseconds>(end_time - start_time).count();
}
__attribute__((constructor)) void setup()
{
using namespace std;
if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr);
cout << fixed << setprecision(__precision__);
#ifdef stderr_path
freopen(stderr_path, "a", stderr);
#endif
#ifdef LOCAL
cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
atexit([]{ cerr << "\n----- Exec time : " << elapsed_time() << " ms -----\n\n"; });
#endif
#ifdef __buffer_check__
atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; });
#endif
}
} // namespace config
#pragma endregion
#pragma region utility
// lambda wrapper for recursive method.
template <class lambda_type>
class make_recursive
{
lambda_type func;
public:
make_recursive(lambda_type &&f) : func(std::move(f)) {}
template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
// #define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
assert(__ok != __ng);
std::ptrdiff_t dist(__ng - __ok);
while(std::abs(dist) > 1)
{
iter_type mid(__ok + dist / 2);
if(pred(mid)) __ok = mid, dist -= dist / 2;
else __ng = mid, dist /= 2;
}
return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
assert(__ok != __ng);
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
assert(__first < __last);
std::ptrdiff_t dist(__last - __first);
while(dist > 2)
{
iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3);
if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
else __first = __left, dist -= dist / 3;
}
if(dist > 1 && comp(next(__first), __first)) ++__first;
return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
assert(__first < __last);
while(__last - __first > eps)
{
long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
if(comp(__left, __right)) __last = __right;
else __first = __left;
}
return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion
#pragma region alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion
#pragma region library
#include <cassert>
#include <vector>
template <class monoid, class homomorphism>
class lazy_segment_tree
{
using size_type = typename std::vector<monoid>::size_type;
size_type size_orig, height, size_ext;
std::vector<monoid> data;
std::vector<homomorphism> lazy;
void recalc(const size_type node) { data[node] = data[node << 1] + data[node << 1 | 1]; }
void apply(size_type index, const homomorphism &homo)
{
homo.apply(data[index]);
if(index < size_ext) lazy[index] *= homo;
}
void push(size_type index)
{
if(index >= size_ext) return;
apply(index << 1, lazy[index]);
apply(index << 1 | 1, lazy[index]);
lazy[index] = homomorphism{};
}
template <class pred_type>
size_type left_search_subtree(size_type index, const pred_type pred, monoid mono)
{
assert(index);
while(index < size_ext)
{
push(index);
const monoid tmp = data[(index <<= 1) | 1] + mono;
if(pred(tmp)) mono = tmp;
else ++index;
}
return ++index -= size_ext;
}
template <class pred_type>
size_type right_search_subtree(size_type index, const pred_type pred, monoid mono)
{
assert(index);
while(index < size_ext)
{
push(index);
const monoid tmp = mono + data[index <<= 1];
if(pred(tmp)) ++index, mono = tmp;
}
return (index -= size_ext) < size_orig ? index : size_orig;
}
public:
lazy_segment_tree(const size_type n = 0) : size_orig{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), size_ext{1u << height}, data(size_ext << 1), lazy(size_ext) {}
lazy_segment_tree(const size_type n, const monoid &init) : lazy_segment_tree(n)
{
std::fill(std::next(std::begin(data), size_ext), std::end(data), init);
for(size_type i{size_ext}; --i; ) recalc(i);
}
template <class iter_type, class value_type = typename std::iterator_traits<iter_type>::value_type>
lazy_segment_tree(iter_type first, iter_type last)
: size_orig(std::distance(first, last)), height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0), size_ext{1u << height}, data(size_ext << 1), lazy(size_ext)
{
static_assert(std::is_constructible<monoid, value_type>::value, "monoid(iter_type::value_type) is not constructible.");
for(auto iter{std::next(std::begin(data), size_ext)}; iter != std::end(data) && first != last; ++iter, ++first) *iter = monoid(*first);
for(size_type i{size_ext}; --i; ) recalc(i);
}
template <class container_type, typename = typename container_type::value_type>
lazy_segment_tree(const container_type &cont) : lazy_segment_tree(std::begin(cont), std::end(cont)) {}
size_type size() const { return size_orig; }
size_type capacity() const { return size_ext; }
monoid operator[](size_type index) { return fold(index, index + 1); }
void update(const size_type index, const homomorphism &homo) { update(index, index + 1, homo); }
void update(size_type first, size_type last, const homomorphism &homo)
{
assert(last <= size_orig);
if(first >= last) return;
first += size_ext, last += size_ext - 1;
for(size_type i = height; i; --i) push(first >> i), push(last >> i);
for(size_type l = first, r = last + 1; last; l >>= 1, r >>= 1)
{
if(l < r)
{
if(l & 1) apply(l++, homo);
if(r & 1) apply(--r, homo);
}
if(first >>= 1, last >>= 1)
{
recalc(first), recalc(last);
}
}
}
monoid fold() { return fold(0, size_orig); }
monoid fold(size_type first, size_type last)
{
assert(last <= size_orig);
if(first >= last) return monoid{};
first += size_ext, last += size_ext - 1;
monoid left_val{}, right_val{};
for(size_type l = first, r = last + 1; last; l >>= 1, r >>= 1)
{
if(l < r)
{
if(l & 1) left_val = left_val + data[l++];
if(r & 1) right_val = data[--r] + right_val;
}
if(first >>= 1, last >>= 1)
{
lazy[first].apply(left_val);
lazy[last].apply(right_val);
}
}
return left_val + right_val;
}
template <class pred_type>
size_type left_search(size_type right, const pred_type pred)
{
assert(right <= size_orig);
right += size_ext - 1;
for(size_type i{height}; i; --i) push(right >> i);
++right;
monoid mono{};
for(size_type left{size_ext}; left != right; left >>= 1, right >>= 1)
{
if((left & 1) != (right & 1))
{
const monoid tmp = data[--right] + mono;
if(!pred(tmp)) return left_search_subtree(right, pred, mono);
mono = tmp;
}
}
return 0;
}
template <class pred_type>
size_type right_search(size_type left, const pred_type pred)
{
assert(left <= size_orig);
left += size_ext;
for(size_type i{height}; i; --i) push(left >> i);
monoid mono{};
for(size_type right{size_ext << 1}; left != right; left >>= 1, right >>= 1)
{
if((left & 1) != (right & 1))
{
const monoid tmp = mono + data[left];
if(!pred(tmp)) return right_search_subtree(left, pred, mono);
mono = tmp;
++left;
}
}
return size_orig;
}
}; //class lazy_segment_tree
#include <cassert>
#include <iostream>
#include <valarray>
template <class Ring>
class matrix
{
struct identity_wrapper
{
template <bool arith, class = void>
struct check { static Ring identity() { return Ring::identity(); } };
template <class void_t>
struct check<true, void_t> { static Ring identity() { return 1; } };
operator Ring() { return check<std::is_arithmetic<Ring>::value>::identity(); }
};
using row_type = std::valarray<Ring>;
using data_type = std::valarray<row_type>;
data_type data;
friend std::istream &operator>>(std::istream &is, matrix &mat)
{
for(size_t i = 0; i != mat.rows(); ++i)
for(size_t j = 0; j != mat.columns(); ++j)
is >> mat[i][j];
return is;
}
friend std::ostream &operator<<(std::ostream &os, const matrix &mat)
{
for(size_t i = 0; i != mat.rows(); ++i)
{
if(i) os << "\n";
for(size_t j = 0; j != mat.columns(); ++j) os << (j ? " " : "") << mat[i][j];
}
return os;
}
friend matrix transpose(const matrix &mat)
{
matrix res(mat.columns(), mat.rows());
for(size_t i{mat.columns()}; i--;)
for(size_t j{mat.rows()}; j--;)
res[i][j] = mat[j][i];
return res;
}
public:
explicit matrix(size_t _n = 1) : matrix(_n, _n) {}
matrix(size_t _r, size_t _c) : data(row_type(_c), _r) {}
matrix(const data_type &_data) : data(_data) {}
size_t rows() const { return data.size(); }
size_t columns() const { return data[0].size(); }
row_type &operator[](const size_t i) { assert(i < data.size()); return data[i]; }
const row_type &operator[](const size_t i) const { assert(i < data.size()); return data[i]; }
matrix operator-() const { return {-data}; }
matrix &operator+=(const matrix &rhs) { data += rhs.data; return *this; }
matrix &operator-=(const matrix &rhs) { data -= rhs.data; return *this; }
matrix &operator*=(matrix rhs) noexcept
{
assert(columns() == rhs.rows());
rhs = transpose(rhs);
for(row_type &row : data)
{
const row_type copied{row};
for(size_t j{rhs.rows()}; j--;) row[j] = (copied * rhs[j]).sum();
}
return *this;
}
matrix operator+(const matrix &rhs) const { return matrix{*this} += rhs; }
matrix operator-(const matrix &rhs) const { return matrix{*this} -= rhs; }
matrix operator*(const matrix &rhs) const { return matrix{*this} *= rhs; }
friend row_type &operator*=(row_type &lhs, const matrix &rhs) { return lhs = lhs * rhs; }
friend row_type operator*(row_type &lhs, const matrix &rhs)
{
assert(lhs.size() == rhs.rows());
row_type res(rhs.columns());
for(size_t k{lhs.size()}; k--;)
for(size_t j{rhs.columns()}; j--;)
res[j] += lhs[k] * rhs[k][j];
return res;
}
static matrix identity(const size_t _n)
{
matrix ide(_n);
for(size_t i{_n}; i--;) ide[i][i] = identity_wrapper();
return ide;
}
friend matrix pow(matrix mat, unsigned long long exp)
{
matrix res{identity(mat.rows())};
for(assert(mat.rows() == mat.columns()); exp; mat *= mat, exp >>= 1) if(exp & 1) res *= mat;
return res;
}
}; // class matrix
#pragma endregion
struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
unsigned t = 1;
#ifdef LOCAL
t = 1;
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--) solver();
}
struct mono
{
i64 squs=0,lins=0,cnt=0;
// binary operation
mono operator+(const mono& rhs) const { return mono{*this} += rhs; }
// operation assignment
mono &operator+=(const mono &rhs)
{
squs+=rhs.squs;
lins+=rhs.lins;
cnt+=rhs.cnt;
return *this;
}
};
struct homo
{
i64 val=0;
// compose
void operator*=(const homo& rhs)
{
val+=rhs.val;
}
// apply self to an element in S
template <class S>
void apply(S &rhs) const
{
rhs.squs+=rhs.lins*val*2+val*val*rhs.cnt;
rhs.lins+=rhs.cnt*val;
}
};
struct solver
{
solver()
{
int n; cin>>n;
lazy_segment_tree<mono,homo> laz;
{
vector<mono> init(n);
for(auto &e: init)
{
i64 a; cin>>a;
e={a*a,a,1};
}
laz=init;
}
int q; cin>>q;
while(q--)
{
i64 t,l,r,x; cin>>t>>l>>r; --l;
if(t==1)
{
cin>>x;
laz.update(l,r,{x});
}
else
{
cout << laz.fold(l,r).squs << endl;
}
}
}
};
jell