結果
問題 | No.1099 Range Square Sum |
ユーザー | jell |
提出日時 | 2020-06-26 22:27:27 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 193 ms / 2,000 ms |
コード長 | 18,577 bytes |
コンパイル時間 | 2,767 ms |
コンパイル使用メモリ | 228,736 KB |
実行使用メモリ | 22,340 KB |
最終ジャッジ日時 | 2024-07-04 22:12:23 |
合計ジャッジ時間 | 6,271 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,812 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 4 ms
6,944 KB |
testcase_12 | AC | 3 ms
6,944 KB |
testcase_13 | AC | 3 ms
6,940 KB |
testcase_14 | AC | 4 ms
6,944 KB |
testcase_15 | AC | 3 ms
6,944 KB |
testcase_16 | AC | 3 ms
6,944 KB |
testcase_17 | AC | 4 ms
6,944 KB |
testcase_18 | AC | 3 ms
6,944 KB |
testcase_19 | AC | 4 ms
6,940 KB |
testcase_20 | AC | 3 ms
6,944 KB |
testcase_21 | AC | 193 ms
22,224 KB |
testcase_22 | AC | 181 ms
22,312 KB |
testcase_23 | AC | 192 ms
22,324 KB |
testcase_24 | AC | 177 ms
22,336 KB |
testcase_25 | AC | 181 ms
22,340 KB |
testcase_26 | AC | 148 ms
22,244 KB |
testcase_27 | AC | 153 ms
22,340 KB |
testcase_28 | AC | 153 ms
22,216 KB |
testcase_29 | AC | 153 ms
22,284 KB |
testcase_30 | AC | 152 ms
22,288 KB |
ソースコード
#pragma region preprocessor #ifdef LOCAL //* #define _GLIBCXX_DEBUG // gcc /*/ #define _LIBCPP_DEBUG 0 // clang //*/ // #define __buffer_check__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif #define __precision__ 15 #define __iostream_untie__ true #include <bits/stdc++.h> #include <ext/rope> #ifdef LOCAL #include "dump.hpp" #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n" #else #define dump(...) ((void)0) #define mesg(str) ((void)0) #endif #pragma endregion #pragma region std-overload namespace std { // hash template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } }; template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } }; // iostream template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; } template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } }; template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } }; template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } }; template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #pragma endregion #pragma region config namespace config { const auto start_time{std::chrono::system_clock::now()}; int64_t elapsed_time() { using namespace std::chrono; const auto end_time{std::chrono::system_clock::now()}; return duration_cast<milliseconds>(end_time - start_time).count(); } __attribute__((constructor)) void setup() { using namespace std; if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr); cout << fixed << setprecision(__precision__); #ifdef stderr_path freopen(stderr_path, "a", stderr); #endif #ifdef LOCAL cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n"; atexit([]{ cerr << "\n----- Exec time : " << elapsed_time() << " ms -----\n\n"; }); #endif #ifdef __buffer_check__ atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; }); #endif } } // namespace config #pragma endregion #pragma region utility // lambda wrapper for recursive method. template <class lambda_type> class make_recursive { lambda_type func; public: make_recursive(lambda_type &&f) : func(std::move(f)) {} template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); } }; template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; } // #define input(type, var, ...) type var{read<type>(__VA_ARGS__)} // substitute y for x if x > y. template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitute y for x if x < y. template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search on discrete range. template <class iter_type, class pred_type> iter_type binary(iter_type __ok, iter_type __ng, pred_type pred) { assert(__ok != __ng); std::ptrdiff_t dist(__ng - __ok); while(std::abs(dist) > 1) { iter_type mid(__ok + dist / 2); if(pred(mid)) __ok = mid, dist -= dist / 2; else __ng = mid, dist /= 2; } return __ok; } // binary search on real numbers. template <class pred_type> long double binary(long double __ok, long double __ng, const long double eps, pred_type pred) { assert(__ok != __ng); while(std::abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // trinary search on discrete range. template <class iter_type, class comp_type> iter_type trinary(iter_type __first, iter_type __last, comp_type comp) { assert(__first < __last); std::ptrdiff_t dist(__last - __first); while(dist > 2) { iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3); if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3; else __first = __left, dist -= dist / 3; } if(dist > 1 && comp(next(__first), __first)) ++__first; return __first; } // trinary search on real numbers. template <class comp_type> long double trinary(long double __first, long double __last, const long double eps, comp_type comp) { assert(__first < __last); while(__last - __first > eps) { long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3}; if(comp(__left, __right)) __last = __right; else __first = __left; } return __first; } // size of array. template <class A, size_t N> size_t size(A (&array)[N]) { return N; } // be careful that val is type-sensitive. template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } #pragma endregion #pragma region alias using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using p32 = pair<i32, i32>; using p64 = pair<i64, i64>; template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>; template <class T> using hashset = unordered_set<T>; template <class Key, class Value> using hashmap = unordered_map<Key, Value>; using namespace __gnu_cxx; #pragma endregion #pragma region library #include <cassert> #include <vector> template <class monoid, class homomorphism> class lazy_segment_tree { using size_type = typename std::vector<monoid>::size_type; size_type size_orig, height, size_ext; std::vector<monoid> data; std::vector<homomorphism> lazy; void recalc(const size_type node) { data[node] = data[node << 1] + data[node << 1 | 1]; } void apply(size_type index, const homomorphism &homo) { homo.apply(data[index]); if(index < size_ext) lazy[index] *= homo; } void push(size_type index) { if(index >= size_ext) return; apply(index << 1, lazy[index]); apply(index << 1 | 1, lazy[index]); lazy[index] = homomorphism{}; } template <class pred_type> size_type left_search_subtree(size_type index, const pred_type pred, monoid mono) { assert(index); while(index < size_ext) { push(index); const monoid tmp = data[(index <<= 1) | 1] + mono; if(pred(tmp)) mono = tmp; else ++index; } return ++index -= size_ext; } template <class pred_type> size_type right_search_subtree(size_type index, const pred_type pred, monoid mono) { assert(index); while(index < size_ext) { push(index); const monoid tmp = mono + data[index <<= 1]; if(pred(tmp)) ++index, mono = tmp; } return (index -= size_ext) < size_orig ? index : size_orig; } public: lazy_segment_tree(const size_type n = 0) : size_orig{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), size_ext{1u << height}, data(size_ext << 1), lazy(size_ext) {} lazy_segment_tree(const size_type n, const monoid &init) : lazy_segment_tree(n) { std::fill(std::next(std::begin(data), size_ext), std::end(data), init); for(size_type i{size_ext}; --i; ) recalc(i); } template <class iter_type, class value_type = typename std::iterator_traits<iter_type>::value_type> lazy_segment_tree(iter_type first, iter_type last) : size_orig(std::distance(first, last)), height(size_orig > 1 ? 32 - __builtin_clz(size_orig - 1) : 0), size_ext{1u << height}, data(size_ext << 1), lazy(size_ext) { static_assert(std::is_constructible<monoid, value_type>::value, "monoid(iter_type::value_type) is not constructible."); for(auto iter{std::next(std::begin(data), size_ext)}; iter != std::end(data) && first != last; ++iter, ++first) *iter = monoid(*first); for(size_type i{size_ext}; --i; ) recalc(i); } template <class container_type, typename = typename container_type::value_type> lazy_segment_tree(const container_type &cont) : lazy_segment_tree(std::begin(cont), std::end(cont)) {} size_type size() const { return size_orig; } size_type capacity() const { return size_ext; } monoid operator[](size_type index) { return fold(index, index + 1); } void update(const size_type index, const homomorphism &homo) { update(index, index + 1, homo); } void update(size_type first, size_type last, const homomorphism &homo) { assert(last <= size_orig); if(first >= last) return; first += size_ext, last += size_ext - 1; for(size_type i = height; i; --i) push(first >> i), push(last >> i); for(size_type l = first, r = last + 1; last; l >>= 1, r >>= 1) { if(l < r) { if(l & 1) apply(l++, homo); if(r & 1) apply(--r, homo); } if(first >>= 1, last >>= 1) { recalc(first), recalc(last); } } } monoid fold() { return fold(0, size_orig); } monoid fold(size_type first, size_type last) { assert(last <= size_orig); if(first >= last) return monoid{}; first += size_ext, last += size_ext - 1; monoid left_val{}, right_val{}; for(size_type l = first, r = last + 1; last; l >>= 1, r >>= 1) { if(l < r) { if(l & 1) left_val = left_val + data[l++]; if(r & 1) right_val = data[--r] + right_val; } if(first >>= 1, last >>= 1) { lazy[first].apply(left_val); lazy[last].apply(right_val); } } return left_val + right_val; } template <class pred_type> size_type left_search(size_type right, const pred_type pred) { assert(right <= size_orig); right += size_ext - 1; for(size_type i{height}; i; --i) push(right >> i); ++right; monoid mono{}; for(size_type left{size_ext}; left != right; left >>= 1, right >>= 1) { if((left & 1) != (right & 1)) { const monoid tmp = data[--right] + mono; if(!pred(tmp)) return left_search_subtree(right, pred, mono); mono = tmp; } } return 0; } template <class pred_type> size_type right_search(size_type left, const pred_type pred) { assert(left <= size_orig); left += size_ext; for(size_type i{height}; i; --i) push(left >> i); monoid mono{}; for(size_type right{size_ext << 1}; left != right; left >>= 1, right >>= 1) { if((left & 1) != (right & 1)) { const monoid tmp = mono + data[left]; if(!pred(tmp)) return right_search_subtree(left, pred, mono); mono = tmp; ++left; } } return size_orig; } }; //class lazy_segment_tree #include <cassert> #include <iostream> #include <valarray> template <class Ring> class matrix { struct identity_wrapper { template <bool arith, class = void> struct check { static Ring identity() { return Ring::identity(); } }; template <class void_t> struct check<true, void_t> { static Ring identity() { return 1; } }; operator Ring() { return check<std::is_arithmetic<Ring>::value>::identity(); } }; using row_type = std::valarray<Ring>; using data_type = std::valarray<row_type>; data_type data; friend std::istream &operator>>(std::istream &is, matrix &mat) { for(size_t i = 0; i != mat.rows(); ++i) for(size_t j = 0; j != mat.columns(); ++j) is >> mat[i][j]; return is; } friend std::ostream &operator<<(std::ostream &os, const matrix &mat) { for(size_t i = 0; i != mat.rows(); ++i) { if(i) os << "\n"; for(size_t j = 0; j != mat.columns(); ++j) os << (j ? " " : "") << mat[i][j]; } return os; } friend matrix transpose(const matrix &mat) { matrix res(mat.columns(), mat.rows()); for(size_t i{mat.columns()}; i--;) for(size_t j{mat.rows()}; j--;) res[i][j] = mat[j][i]; return res; } public: explicit matrix(size_t _n = 1) : matrix(_n, _n) {} matrix(size_t _r, size_t _c) : data(row_type(_c), _r) {} matrix(const data_type &_data) : data(_data) {} size_t rows() const { return data.size(); } size_t columns() const { return data[0].size(); } row_type &operator[](const size_t i) { assert(i < data.size()); return data[i]; } const row_type &operator[](const size_t i) const { assert(i < data.size()); return data[i]; } matrix operator-() const { return {-data}; } matrix &operator+=(const matrix &rhs) { data += rhs.data; return *this; } matrix &operator-=(const matrix &rhs) { data -= rhs.data; return *this; } matrix &operator*=(matrix rhs) noexcept { assert(columns() == rhs.rows()); rhs = transpose(rhs); for(row_type &row : data) { const row_type copied{row}; for(size_t j{rhs.rows()}; j--;) row[j] = (copied * rhs[j]).sum(); } return *this; } matrix operator+(const matrix &rhs) const { return matrix{*this} += rhs; } matrix operator-(const matrix &rhs) const { return matrix{*this} -= rhs; } matrix operator*(const matrix &rhs) const { return matrix{*this} *= rhs; } friend row_type &operator*=(row_type &lhs, const matrix &rhs) { return lhs = lhs * rhs; } friend row_type operator*(row_type &lhs, const matrix &rhs) { assert(lhs.size() == rhs.rows()); row_type res(rhs.columns()); for(size_t k{lhs.size()}; k--;) for(size_t j{rhs.columns()}; j--;) res[j] += lhs[k] * rhs[k][j]; return res; } static matrix identity(const size_t _n) { matrix ide(_n); for(size_t i{_n}; i--;) ide[i][i] = identity_wrapper(); return ide; } friend matrix pow(matrix mat, unsigned long long exp) { matrix res{identity(mat.rows())}; for(assert(mat.rows() == mat.columns()); exp; mat *= mat, exp >>= 1) if(exp & 1) res *= mat; return res; } }; // class matrix #pragma endregion struct solver; template <class> void main_(); int main() { main_<solver>(); } template <class solver> void main_() { unsigned t = 1; #ifdef LOCAL t = 1; #endif // t = -1; // infinite loop // cin >> t; // case number given while(t--) solver(); } struct mono { i64 squs=0,lins=0,cnt=0; // binary operation mono operator+(const mono& rhs) const { return mono{*this} += rhs; } // operation assignment mono &operator+=(const mono &rhs) { squs+=rhs.squs; lins+=rhs.lins; cnt+=rhs.cnt; return *this; } }; struct homo { i64 val=0; // compose void operator*=(const homo& rhs) { val+=rhs.val; } // apply self to an element in S template <class S> void apply(S &rhs) const { rhs.squs+=rhs.lins*val*2+val*val*rhs.cnt; rhs.lins+=rhs.cnt*val; } }; struct solver { solver() { int n; cin>>n; lazy_segment_tree<mono,homo> laz; { vector<mono> init(n); for(auto &e: init) { i64 a; cin>>a; e={a*a,a,1}; } laz=init; } int q; cin>>q; while(q--) { i64 t,l,r,x; cin>>t>>l>>r; --l; if(t==1) { cin>>x; laz.update(l,r,{x}); } else { cout << laz.fold(l,r).squs << endl; } } } };