結果
問題 | No.1100 Boxes |
ユーザー | jell |
提出日時 | 2020-06-26 22:42:42 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 18 ms / 2,000 ms |
コード長 | 14,059 bytes |
コンパイル時間 | 2,854 ms |
コンパイル使用メモリ | 223,136 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-04 22:35:04 |
合計ジャッジ時間 | 4,383 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
5,248 KB |
testcase_01 | AC | 6 ms
5,376 KB |
testcase_02 | AC | 6 ms
5,376 KB |
testcase_03 | AC | 7 ms
5,376 KB |
testcase_04 | AC | 7 ms
5,376 KB |
testcase_05 | AC | 7 ms
5,376 KB |
testcase_06 | AC | 6 ms
5,376 KB |
testcase_07 | AC | 6 ms
5,376 KB |
testcase_08 | AC | 7 ms
5,376 KB |
testcase_09 | AC | 6 ms
5,376 KB |
testcase_10 | AC | 6 ms
5,376 KB |
testcase_11 | AC | 7 ms
5,376 KB |
testcase_12 | AC | 6 ms
5,376 KB |
testcase_13 | AC | 7 ms
5,376 KB |
testcase_14 | AC | 6 ms
5,376 KB |
testcase_15 | AC | 6 ms
5,376 KB |
testcase_16 | AC | 6 ms
5,376 KB |
testcase_17 | AC | 6 ms
5,376 KB |
testcase_18 | AC | 6 ms
5,376 KB |
testcase_19 | AC | 7 ms
5,376 KB |
testcase_20 | AC | 7 ms
5,376 KB |
testcase_21 | AC | 9 ms
5,376 KB |
testcase_22 | AC | 13 ms
5,376 KB |
testcase_23 | AC | 10 ms
5,376 KB |
testcase_24 | AC | 10 ms
5,376 KB |
testcase_25 | AC | 12 ms
5,376 KB |
testcase_26 | AC | 16 ms
5,376 KB |
testcase_27 | AC | 14 ms
5,376 KB |
testcase_28 | AC | 8 ms
5,376 KB |
testcase_29 | AC | 16 ms
5,376 KB |
testcase_30 | AC | 14 ms
5,376 KB |
testcase_31 | AC | 10 ms
5,376 KB |
testcase_32 | AC | 14 ms
5,376 KB |
testcase_33 | AC | 18 ms
5,376 KB |
testcase_34 | AC | 18 ms
5,376 KB |
testcase_35 | AC | 6 ms
5,376 KB |
testcase_36 | AC | 8 ms
5,376 KB |
testcase_37 | AC | 6 ms
5,376 KB |
testcase_38 | AC | 11 ms
5,376 KB |
testcase_39 | AC | 17 ms
5,376 KB |
ソースコード
#pragma region preprocessor #ifdef LOCAL //* #define _GLIBCXX_DEBUG // gcc /*/ #define _LIBCPP_DEBUG 0 // clang //*/ // #define __buffer_check__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif #define __precision__ 15 #define __iostream_untie__ true #include <bits/stdc++.h> #include <ext/rope> #ifdef LOCAL #include "dump.hpp" #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n" #else #define dump(...) ((void)0) #define mesg(str) ((void)0) #endif #pragma endregion #pragma region std-overload namespace std { // hash template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } }; template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } }; // iostream template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; } template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; } template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } }; template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } }; template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } }; template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #pragma endregion #pragma region config namespace config { const auto start_time{std::chrono::system_clock::now()}; int64_t elapsed_time() { using namespace std::chrono; const auto end_time{std::chrono::system_clock::now()}; return duration_cast<milliseconds>(end_time - start_time).count(); } __attribute__((constructor)) void setup() { using namespace std; if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr); cout << fixed << setprecision(__precision__); #ifdef stderr_path freopen(stderr_path, "a", stderr); #endif #ifdef LOCAL cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n"; atexit([]{ cerr << "\n----- Exec time : " << elapsed_time() << " ms -----\n\n"; }); #endif #ifdef __buffer_check__ atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; }); #endif } } // namespace config #pragma endregion #pragma region utility // lambda wrapper for recursive method. template <class lambda_type> class make_recursive { lambda_type func; public: make_recursive(lambda_type &&f) : func(std::move(f)) {} template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); } }; template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; } // #define input(type, var, ...) type var{read<type>(__VA_ARGS__)} // substitute y for x if x > y. template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitute y for x if x < y. template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search on discrete range. template <class iter_type, class pred_type> iter_type binary(iter_type __ok, iter_type __ng, pred_type pred) { assert(__ok != __ng); std::ptrdiff_t dist(__ng - __ok); while(std::abs(dist) > 1) { iter_type mid(__ok + dist / 2); if(pred(mid)) __ok = mid, dist -= dist / 2; else __ng = mid, dist /= 2; } return __ok; } // binary search on real numbers. template <class pred_type> long double binary(long double __ok, long double __ng, const long double eps, pred_type pred) { assert(__ok != __ng); while(std::abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // trinary search on discrete range. template <class iter_type, class comp_type> iter_type trinary(iter_type __first, iter_type __last, comp_type comp) { assert(__first < __last); std::ptrdiff_t dist(__last - __first); while(dist > 2) { iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3); if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3; else __first = __left, dist -= dist / 3; } if(dist > 1 && comp(next(__first), __first)) ++__first; return __first; } // trinary search on real numbers. template <class comp_type> long double trinary(long double __first, long double __last, const long double eps, comp_type comp) { assert(__first < __last); while(__last - __first > eps) { long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3}; if(comp(__left, __right)) __last = __right; else __first = __left; } return __first; } // size of array. template <class A, size_t N> size_t size(A (&array)[N]) { return N; } // be careful that val is type-sensitive. template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } #pragma endregion #pragma region alias using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using p32 = pair<i32, i32>; using p64 = pair<i64, i64>; template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>; template <class T> using hashset = unordered_set<T>; template <class Key, class Value> using hashmap = unordered_map<Key, Value>; using namespace __gnu_cxx; #pragma endregion #pragma region library #ifndef modint_hpp #define modint_hpp #include <cassert> #include <iostream> template <int mod> class modint { int val; public: constexpr long long value() const noexcept { return val; } constexpr modint() noexcept : val{0} {} constexpr modint(long long x) noexcept : val((x %= mod) < 0 ? mod + x : x) {} constexpr modint operator++(int) noexcept { modint t = *this; return ++val, t; } constexpr modint operator--(int) noexcept { modint t = *this; return --val, t; } constexpr modint &operator++() noexcept { return ++val, *this; } constexpr modint &operator--() noexcept { return --val, *this; } constexpr modint operator-() const noexcept { return modint(-val); } constexpr modint &operator+=(const modint &other) noexcept { return (val += other.val) < mod ? 0 : val -= mod, *this; } constexpr modint &operator-=(const modint &other) noexcept { return (val += mod - other.val) < mod ? 0 : val -= mod, *this; } constexpr modint &operator*=(const modint &other) noexcept { return val = (long long)val * other.val % mod, *this; } constexpr modint &operator/=(const modint &other) noexcept { return *this *= inverse(other); } constexpr modint operator+(const modint &other) const noexcept { return modint(*this) += other; } constexpr modint operator-(const modint &other) const noexcept { return modint(*this) -= other; } constexpr modint operator*(const modint &other) const noexcept { return modint(*this) *= other; } constexpr modint operator/(const modint &other) const noexcept { return modint(*this) /= other; } constexpr bool operator==(const modint &other) const noexcept { return val == other.val; } constexpr bool operator!=(const modint &other) const noexcept { return val != other.val; } constexpr bool operator!() const noexcept { return !val; } friend constexpr modint operator+(long long x, modint y) noexcept { return modint(x) + y; } friend constexpr modint operator-(long long x, modint y) noexcept { return modint(x) - y; } friend constexpr modint operator*(long long x, modint y) noexcept { return modint(x) * y; } friend constexpr modint operator/(long long x, modint y) noexcept { return modint(x) / y; } static constexpr modint inverse(const modint &other) noexcept { assert(other != 0); int a{mod}, b{other.val}, u{}, v{1}, t{}; while(b) t = a / b, a ^= b ^= (a -= t * b) ^= b, u ^= v ^= (u -= t * v) ^= v; return {u}; } static constexpr modint pow(modint other, long long e) noexcept { if(e < 0) e = e % (mod - 1) + mod - 1; modint res{1}; while(e) { if(e & 1) res *= other; other *= other, e >>= 1; } return res; } friend std::ostream &operator<<(std::ostream &os, const modint &other) noexcept { return os << other.val; } friend std::istream &operator>>(std::istream &is, modint &other) noexcept { long long val; other = {(is >> val, val)}; return is; } }; // class modint #endif // modint_hpp #ifndef binomial_hpp #define binomial_hpp namespace binomial { constexpr int mod = //* 998244353 /*/ 1000000007 /**/; constexpr int size = 1 << 17; using mint = modint<mod>; namespace { namespace internal_helper { struct fact_impl { int _fact[size], _inv[size], _invfact[size]; fact_impl() : _fact{1}, _inv{0, 1}, _invfact{1} { for(int i = 1; i < size; ++i) _fact[i] = (long long)_fact[i - 1] * i % mod; for(int i = 2; i < size; ++i) _inv[i] = mod - (long long)mod / i * _inv[mod % i] % mod; for(int i = 1; i < size; ++i) _invfact[i] = (long long)_invfact[i - 1] * _inv[i] % mod; } } fact_calced; } // namespace internal_helper mint fact(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._fact[x]; } mint invfact(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._invfact[x]; } mint inv(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._inv[x]; } } // unnamed namespace mint binom(int n, int k) noexcept { return fact(n) * invfact(k) * invfact(n - k); } mint fallfact(int n, int k) noexcept { return fact(n) * invfact(n - k); } mint risefact(int n, int k) noexcept { return fallfact(n + k - 1, k); } // time complexity: O(min(n, k) * log(n)) mint stirling_2nd(int n, int k) noexcept { if(n < k) return 0; mint res{}; for(int i{}, j{k}; j >= 0; ++i, --j) if(i & 1) res -= mint::pow(j, n) * invfact(j) * invfact(i); else res += mint::pow(j, n) * invfact(j) * invfact(i); return res; }; // time complexity: O(min(n, k) * log(n)) mint bell(int n, int k) noexcept { if(n < k) k = n; mint res{}, alt{}; for(int i{}, j{k}; j >= 0; ++i, --j) { if(i & 1) alt -= invfact(i); else alt += invfact(i); res += alt * mint::pow(j, n) * invfact(j); } return res; } namespace internal_helper {} // namespace internal_helper } // namespace binomial #endif // binomial_hpp #pragma endregion struct solver; template <class> void main_(); int main() { main_<solver>(); } template <class solver> void main_() { unsigned t = 1; #ifdef LOCAL t = 1; #endif // t = -1; // infinite loop // cin >> t; // case number given while(t--) solver(); } struct solver { solver() { using namespace binomial; int n,k; cin>>n>>k; mint p2=1; mint ans; for(int i=0; i<k; i++) { mint tmp=mint::pow(k-i,n)*binom(k,i)*p2; if(i&1) { ans-=tmp; } else { ans+=tmp; } if(i>0) p2*=2; } cout << mint::pow(k,n)-ans << "\n"; } };