結果

問題 No.1100 Boxes
ユーザー jelljell
提出日時 2020-06-26 22:42:42
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 18 ms / 2,000 ms
コード長 14,059 bytes
コンパイル時間 2,854 ms
コンパイル使用メモリ 223,136 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-04 22:35:04
合計ジャッジ時間 4,383 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 6 ms
5,248 KB
testcase_01 AC 6 ms
5,376 KB
testcase_02 AC 6 ms
5,376 KB
testcase_03 AC 7 ms
5,376 KB
testcase_04 AC 7 ms
5,376 KB
testcase_05 AC 7 ms
5,376 KB
testcase_06 AC 6 ms
5,376 KB
testcase_07 AC 6 ms
5,376 KB
testcase_08 AC 7 ms
5,376 KB
testcase_09 AC 6 ms
5,376 KB
testcase_10 AC 6 ms
5,376 KB
testcase_11 AC 7 ms
5,376 KB
testcase_12 AC 6 ms
5,376 KB
testcase_13 AC 7 ms
5,376 KB
testcase_14 AC 6 ms
5,376 KB
testcase_15 AC 6 ms
5,376 KB
testcase_16 AC 6 ms
5,376 KB
testcase_17 AC 6 ms
5,376 KB
testcase_18 AC 6 ms
5,376 KB
testcase_19 AC 7 ms
5,376 KB
testcase_20 AC 7 ms
5,376 KB
testcase_21 AC 9 ms
5,376 KB
testcase_22 AC 13 ms
5,376 KB
testcase_23 AC 10 ms
5,376 KB
testcase_24 AC 10 ms
5,376 KB
testcase_25 AC 12 ms
5,376 KB
testcase_26 AC 16 ms
5,376 KB
testcase_27 AC 14 ms
5,376 KB
testcase_28 AC 8 ms
5,376 KB
testcase_29 AC 16 ms
5,376 KB
testcase_30 AC 14 ms
5,376 KB
testcase_31 AC 10 ms
5,376 KB
testcase_32 AC 14 ms
5,376 KB
testcase_33 AC 18 ms
5,376 KB
testcase_34 AC 18 ms
5,376 KB
testcase_35 AC 6 ms
5,376 KB
testcase_36 AC 8 ms
5,376 KB
testcase_37 AC 6 ms
5,376 KB
testcase_38 AC 11 ms
5,376 KB
testcase_39 AC 17 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region preprocessor
#ifdef LOCAL
//*
    #define _GLIBCXX_DEBUG  // gcc
/*/
    #define _LIBCPP_DEBUG 0 // clang
//*/
    // #define __buffer_check__
#else
    #pragma GCC optimize("Ofast")
    // #define NDEBUG
#endif
#define __precision__ 15
#define __iostream_untie__ true
#include <bits/stdc++.h>
#include <ext/rope>

#ifdef LOCAL
    #include "dump.hpp"
    #define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]  " << str << "\n"
#else
    #define dump(...) ((void)0)
    #define mesg(str) ((void)0)
#endif
#pragma endregion

#pragma region std-overload
namespace std
{
    // hash
    template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
    template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } };
    template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
    template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } };
    template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t); } };
    // iostream
    template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
    template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
    template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t); return is >> get<index>(t); } };
    template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
    template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(is, t); }
    template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
    template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply(os, t); return os << ' ' << get<index>(t); } };
    template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
    template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(os, t); }
    template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
    template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> = nullptr>
    ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; }
} // namespace std
#pragma endregion

#pragma region config
namespace config
{
    const auto start_time{std::chrono::system_clock::now()};
    int64_t elapsed_time()
    {
        using namespace std::chrono;
        const auto end_time{std::chrono::system_clock::now()};
        return duration_cast<milliseconds>(end_time - start_time).count();
    }
    __attribute__((constructor)) void setup()
    {
        using namespace std;
        if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr);
                cout << fixed << setprecision(__precision__);
        #ifdef stderr_path
                freopen(stderr_path, "a", stderr);
        #endif
        #ifdef LOCAL
                cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
                atexit([]{ cerr << "\n----- Exec time : " << elapsed_time() << " ms -----\n\n"; });
        #endif
        #ifdef __buffer_check__
                atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; });
        #endif
    }
} // namespace config
#pragma endregion

#pragma region utility
// lambda wrapper for recursive method.
template <class lambda_type>
class make_recursive
{
    lambda_type func;
public:
    make_recursive(lambda_type &&f) : func(std::move(f)) {}
    template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
// #define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
    assert(__ok != __ng);
    std::ptrdiff_t dist(__ng - __ok);
    while(std::abs(dist) > 1)
    {
        iter_type mid(__ok + dist / 2);
        if(pred(mid)) __ok = mid, dist -= dist / 2;
        else __ng = mid, dist /= 2;
    }
    return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
    assert(__ok != __ng);
    while(std::abs(__ok - __ng) > eps)
    {
        long double mid{(__ok + __ng) / 2};
        (pred(mid) ? __ok : __ng) = mid;
    }
    return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
    assert(__first < __last);
    std::ptrdiff_t dist(__last - __first);
    while(dist > 2)
    {
        iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3);
        if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
        else __first = __left, dist -= dist / 3;
    }
    if(dist > 1 && comp(next(__first), __first)) ++__first;
    return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
    assert(__first < __last);
    while(__last - __first > eps)
    {
        long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
        if(comp(__left, __right)) __last = __right;
        else __first = __left;
    }
    return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion

#pragma region alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion

#pragma region library

#ifndef modint_hpp
#define modint_hpp
#include <cassert>
#include <iostream>

template <int mod>
class modint
{
    int val;
public:
    constexpr long long value() const noexcept { return val; }
    constexpr modint() noexcept : val{0} {}
    constexpr modint(long long x) noexcept : val((x %= mod) < 0 ? mod + x : x) {}
    constexpr modint operator++(int) noexcept { modint t = *this; return ++val, t; }
    constexpr modint operator--(int) noexcept { modint t = *this; return --val, t; }
    constexpr modint &operator++() noexcept { return ++val, *this; }
    constexpr modint &operator--() noexcept { return --val, *this; }
    constexpr modint operator-() const noexcept { return modint(-val); }
    constexpr modint &operator+=(const modint &other) noexcept { return (val += other.val) < mod ? 0 : val -= mod, *this; }
    constexpr modint &operator-=(const modint &other) noexcept { return (val += mod - other.val) < mod ? 0 : val -= mod, *this; }
    constexpr modint &operator*=(const modint &other) noexcept { return val = (long long)val * other.val % mod, *this; }
    constexpr modint &operator/=(const modint &other) noexcept { return *this *= inverse(other); }
    constexpr modint operator+(const modint &other) const noexcept { return modint(*this) += other; }
    constexpr modint operator-(const modint &other) const noexcept { return modint(*this) -= other; }
    constexpr modint operator*(const modint &other) const noexcept { return modint(*this) *= other; }
    constexpr modint operator/(const modint &other) const noexcept { return modint(*this) /= other; }
    constexpr bool operator==(const modint &other) const noexcept { return val == other.val; }
    constexpr bool operator!=(const modint &other) const noexcept { return val != other.val; }
    constexpr bool operator!() const noexcept { return !val; }
    friend constexpr modint operator+(long long x, modint y) noexcept { return modint(x) + y; }
    friend constexpr modint operator-(long long x, modint y) noexcept { return modint(x) - y; }
    friend constexpr modint operator*(long long x, modint y) noexcept { return modint(x) * y; }
    friend constexpr modint operator/(long long x, modint y) noexcept { return modint(x) / y; }
    static constexpr modint inverse(const modint &other) noexcept
    {
        assert(other != 0);
        int a{mod}, b{other.val}, u{}, v{1}, t{};
        while(b) t = a / b, a ^= b ^= (a -= t * b) ^= b, u ^= v ^= (u -= t * v) ^= v;
        return {u};
    }
    static constexpr modint pow(modint other, long long e) noexcept
    {
        if(e < 0) e = e % (mod - 1) + mod - 1;
        modint res{1};
        while(e) { if(e & 1) res *= other; other *= other, e >>= 1; }
        return res;
    }
    friend std::ostream &operator<<(std::ostream &os, const modint &other) noexcept { return os << other.val; }
    friend std::istream &operator>>(std::istream &is, modint &other) noexcept { long long val; other = {(is >> val, val)}; return is; }
}; // class modint

#endif // modint_hpp

#ifndef binomial_hpp
#define binomial_hpp

namespace binomial
{
    constexpr int mod = //*
                        998244353
                        /*/
                        1000000007
                        /**/;
    constexpr int size = 1 << 17;
    using mint = modint<mod>;
    namespace
    {
        namespace internal_helper
        {
            struct fact_impl
            {
                int _fact[size], _inv[size], _invfact[size];
                fact_impl() : _fact{1}, _inv{0, 1}, _invfact{1}
                {
                    for(int i = 1; i < size; ++i) _fact[i] = (long long)_fact[i - 1] * i % mod;
                    for(int i = 2; i < size; ++i) _inv[i] = mod - (long long)mod / i * _inv[mod % i] % mod;
                    for(int i = 1; i < size; ++i) _invfact[i] = (long long)_invfact[i - 1] * _inv[i] % mod;
                }
            } fact_calced;
        } // namespace internal_helper
        mint fact(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._fact[x]; }
        mint invfact(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._invfact[x]; }
        mint inv(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._inv[x]; }
    } // unnamed namespace
    mint binom(int n, int k) noexcept { return fact(n) * invfact(k) * invfact(n - k); }
    mint fallfact(int n, int k) noexcept { return fact(n) * invfact(n - k); }
    mint risefact(int n, int k) noexcept { return fallfact(n + k - 1, k); }
    // time complexity: O(min(n, k) * log(n))
    mint stirling_2nd(int n, int k) noexcept
    {
        if(n < k) return 0;
        mint res{};
        for(int i{}, j{k}; j >= 0; ++i, --j)
            if(i & 1) res -= mint::pow(j, n) * invfact(j) * invfact(i);
            else res += mint::pow(j, n) * invfact(j) * invfact(i);
        return res;
    };
    // time complexity: O(min(n, k) * log(n))
    mint bell(int n, int k) noexcept
    {
        if(n < k) k = n;
        mint res{}, alt{};
        for(int i{}, j{k}; j >= 0; ++i, --j)
        {
            if(i & 1) alt -= invfact(i);
            else alt += invfact(i);
            res += alt * mint::pow(j, n) * invfact(j);
        }
        return res;
    }
    namespace internal_helper {} // namespace internal_helper
} // namespace binomial

#endif // binomial_hpp

#pragma endregion

struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
    unsigned t = 1;
#ifdef LOCAL
    t = 1;
#endif
    // t = -1; // infinite loop
    // cin >> t; // case number given

    while(t--) solver();
}

struct solver
{

    solver()
    {
        using namespace binomial;

        int n,k; cin>>n>>k;
        mint p2=1;
        mint ans;
        for(int i=0; i<k; i++)
        {
            mint tmp=mint::pow(k-i,n)*binom(k,i)*p2;
            if(i&1)
            {
                ans-=tmp;
            }
            else
            {
                ans+=tmp;
            }
            if(i>0) p2*=2;
        }
        cout << mint::pow(k,n)-ans << "\n";
    }
};
0