結果

問題 No.1097 Remainder Operation
ユーザー jell
提出日時 2020-06-26 23:08:31
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 247 ms / 2,000 ms
コード長 14,294 bytes
コンパイル時間 2,934 ms
コンパイル使用メモリ 227,064 KB
最終ジャッジ日時 2025-01-11 12:07:55
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 21
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma region preprocessor
#ifdef LOCAL
//*
#define _GLIBCXX_DEBUG // gcc
/*/
#define _LIBCPP_DEBUG 0 // clang
//*/
// #define __buffer_check__
#else
#pragma GCC optimize("Ofast")
// #define NDEBUG
#endif
#define __precision__ 15
#define __iostream_untie__ true
#include <bits/stdc++.h>
#include <ext/rope>
#ifdef LOCAL
#include "dump.hpp"
#define mesg(str) std::cerr << "[ " << __LINE__ << " : " << __FUNCTION__ << " ] " << str << "\n"
#else
#define dump(...) ((void)0)
#define mesg(str) ((void)0)
#endif
#pragma endregion
#pragma region std-overload
namespace std
{
// hash
template <class T> size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); }
template <class T, class U> struct hash<pair<T, U>> { size_t operator()(pair<T, U> const &pr) const { return hash_combine(hash_combine(0, pr
        .first), pr.second); } };
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const
        &t) { return hash_combine(tuple_hash_calc<tuple_t, index - 1>::apply(seed, t), get<index>(t)); } };
template <class tuple_t> struct tuple_hash_calc<tuple_t, 0> { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get
        <0>(t)); } };
template <class... T> struct hash<tuple<T...>> { size_t operator()(tuple<T...> const &t) const { return tuple_hash_calc<tuple<T...>>::apply(0, t
        ); } };
// iostream
template <class T, class U> istream &operator>>(istream &is, pair<T, U> &p) { return is >> p.first >> p.second; }
template <class T, class U> ostream &operator<<(ostream &os, const pair<T, U> &p) { return os << p.first << ' ' << p.second; }
template <class tuple_t, size_t index> struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis<tuple_t, index - 1>::apply(is, t
        ); return is >> get<index>(t); } };
template <class tuple_t> struct tupleis<tuple_t, SIZE_MAX> { static istream &apply(istream &is, tuple_t &t) { return is; } };
template <class... T> istream &operator>>(istream &is, tuple<T...> &t) { return tupleis<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply
        (is, t); }
template <> istream &operator>>(istream &is, tuple<> &t) { return is; }
template <class tuple_t, size_t index> struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos<tuple_t, index - 1>::apply
        (os, t); return os << ' ' << get<index>(t); } };
template <class tuple_t> struct tupleos<tuple_t, 0> { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } };
template <class... T> ostream &operator<<(ostream &os, const tuple<T...> &t) { return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1
        >::apply(os, t); }
template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> =
        nullptr>
istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; }
template <class Container, typename Value = typename Container::value_type, enable_if_t<!is_same<decay_t<Container>, string>::value, nullptr_t> =
        nullptr>
ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return
        os; }
} // namespace std
#pragma endregion
#pragma region config
namespace config
{
const auto start_time{std::chrono::system_clock::now()};
int64_t elapsed_time()
{
using namespace std::chrono;
const auto end_time{std::chrono::system_clock::now()};
return duration_cast<milliseconds>(end_time - start_time).count();
}
__attribute__((constructor)) void setup()
{
using namespace std;
if(__iostream_untie__) ios::sync_with_stdio(false), cin.tie(nullptr);
cout << fixed << setprecision(__precision__);
#ifdef stderr_path
freopen(stderr_path, "a", stderr);
#endif
#ifdef LOCAL
cerr << fixed << setprecision(__precision__) << boolalpha << "\n----- stderr at LOCAL -----\n\n";
atexit([]{ cerr << "\n----- Exec time : " << elapsed_time() << " ms -----\n\n"; });
#endif
#ifdef __buffer_check__
atexit([]{ ofstream cnsl("CON"); char bufc; if(cin >> bufc) cnsl << "\n\033[1;35mwarning\033[0m: buffer not empty.\n\n"; });
#endif
}
} // namespace config
#pragma endregion
#pragma region utility
// lambda wrapper for recursive method.
template <class lambda_type>
class make_recursive
{
lambda_type func;
public:
make_recursive(lambda_type &&f) : func(std::move(f)) {}
template <class... Args> auto operator()(Args &&... args) const { return func(*this, std::forward<Args>(args)...); }
};
template <class T, class... types> T read(types... args) noexcept { typename std::remove_const<T>::type obj(args...); std::cin >> obj; return obj; }
// #define input(type, var, ...) type var{read<type>(__VA_ARGS__)}
// substitute y for x if x > y.
template <class T> inline bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; }
// substitute y for x if x < y.
template <class T> inline bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; }
// binary search on discrete range.
template <class iter_type, class pred_type>
iter_type binary(iter_type __ok, iter_type __ng, pred_type pred)
{
assert(__ok != __ng);
std::ptrdiff_t dist(__ng - __ok);
while(std::abs(dist) > 1)
{
iter_type mid(__ok + dist / 2);
if(pred(mid)) __ok = mid, dist -= dist / 2;
else __ng = mid, dist /= 2;
}
return __ok;
}
// binary search on real numbers.
template <class pred_type>
long double binary(long double __ok, long double __ng, const long double eps, pred_type pred)
{
assert(__ok != __ng);
while(std::abs(__ok - __ng) > eps)
{
long double mid{(__ok + __ng) / 2};
(pred(mid) ? __ok : __ng) = mid;
}
return __ok;
}
// trinary search on discrete range.
template <class iter_type, class comp_type>
iter_type trinary(iter_type __first, iter_type __last, comp_type comp)
{
assert(__first < __last);
std::ptrdiff_t dist(__last - __first);
while(dist > 2)
{
iter_type __left(__first + dist / 3), __right = (__first + dist * 2 / 3);
if(comp(__left, __right)) __last = __right, dist = dist * 2 / 3;
else __first = __left, dist -= dist / 3;
}
if(dist > 1 && comp(next(__first), __first)) ++__first;
return __first;
}
// trinary search on real numbers.
template <class comp_type>
long double trinary(long double __first, long double __last, const long double eps, comp_type comp)
{
assert(__first < __last);
while(__last - __first > eps)
{
long double __left{(__first * 2 + __last) / 3}, __right{(__first + __last * 2) / 3};
if(comp(__left, __right)) __last = __right;
else __first = __left;
}
return __first;
}
// size of array.
template <class A, size_t N> size_t size(A (&array)[N]) { return N; }
// be careful that val is type-sensitive.
template <class T, class A, size_t N> void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); }
#pragma endregion
#pragma region alias
using namespace std;
using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t;
using p32 = pair<i32, i32>; using p64 = pair<i64, i64>;
template <class T, class Comp = less<T>> using heap = priority_queue<T, vector<T>, Comp>;
template <class T> using hashset = unordered_set<T>;
template <class Key, class Value> using hashmap = unordered_map<Key, Value>;
using namespace __gnu_cxx;
#pragma endregion
#pragma region library
#ifndef modint_hpp
#define modint_hpp
#include <cassert>
#include <iostream>
template <int mod>
class modint
{
int val;
public:
constexpr long long value() const noexcept { return val; }
constexpr modint() noexcept : val{0} {}
constexpr modint(long long x) noexcept : val((x %= mod) < 0 ? mod + x : x) {}
constexpr modint operator++(int) noexcept { modint t = *this; return ++val, t; }
constexpr modint operator--(int) noexcept { modint t = *this; return --val, t; }
constexpr modint &operator++() noexcept { return ++val, *this; }
constexpr modint &operator--() noexcept { return --val, *this; }
constexpr modint operator-() const noexcept { return modint(-val); }
constexpr modint &operator+=(const modint &other) noexcept { return (val += other.val) < mod ? 0 : val -= mod, *this; }
constexpr modint &operator-=(const modint &other) noexcept { return (val += mod - other.val) < mod ? 0 : val -= mod, *this; }
constexpr modint &operator*=(const modint &other) noexcept { return val = (long long)val * other.val % mod, *this; }
constexpr modint &operator/=(const modint &other) noexcept { return *this *= inverse(other); }
constexpr modint operator+(const modint &other) const noexcept { return modint(*this) += other; }
constexpr modint operator-(const modint &other) const noexcept { return modint(*this) -= other; }
constexpr modint operator*(const modint &other) const noexcept { return modint(*this) *= other; }
constexpr modint operator/(const modint &other) const noexcept { return modint(*this) /= other; }
constexpr bool operator==(const modint &other) const noexcept { return val == other.val; }
constexpr bool operator!=(const modint &other) const noexcept { return val != other.val; }
constexpr bool operator!() const noexcept { return !val; }
friend constexpr modint operator+(long long x, modint y) noexcept { return modint(x) + y; }
friend constexpr modint operator-(long long x, modint y) noexcept { return modint(x) - y; }
friend constexpr modint operator*(long long x, modint y) noexcept { return modint(x) * y; }
friend constexpr modint operator/(long long x, modint y) noexcept { return modint(x) / y; }
static constexpr modint inverse(const modint &other) noexcept
{
assert(other != 0);
int a{mod}, b{other.val}, u{}, v{1}, t{};
while(b) t = a / b, a ^= b ^= (a -= t * b) ^= b, u ^= v ^= (u -= t * v) ^= v;
return {u};
}
static constexpr modint pow(modint other, long long e) noexcept
{
if(e < 0) e = e % (mod - 1) + mod - 1;
modint res{1};
while(e) { if(e & 1) res *= other; other *= other, e >>= 1; }
return res;
}
friend std::ostream &operator<<(std::ostream &os, const modint &other) noexcept { return os << other.val; }
friend std::istream &operator>>(std::istream &is, modint &other) noexcept { long long val; other = {(is >> val, val)}; return is; }
}; // class modint
#endif // modint_hpp
#ifndef binomial_hpp
#define binomial_hpp
namespace binomial
{
constexpr int mod = //*
998244353
/*/
1000000007
/**/;
constexpr int size = 1 << 17;
using mint = modint<mod>;
namespace
{
namespace internal_helper
{
struct fact_impl
{
int _fact[size], _inv[size], _invfact[size];
fact_impl() : _fact{1}, _inv{0, 1}, _invfact{1}
{
for(int i = 1; i < size; ++i) _fact[i] = (long long)_fact[i - 1] * i % mod;
for(int i = 2; i < size; ++i) _inv[i] = mod - (long long)mod / i * _inv[mod % i] % mod;
for(int i = 1; i < size; ++i) _invfact[i] = (long long)_invfact[i - 1] * _inv[i] % mod;
}
} fact_calced;
} // namespace internal_helper
mint fact(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._fact[x]; }
mint invfact(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._invfact[x]; }
mint inv(int x) noexcept { assert(x < size); return x < 0 ? 0 : internal_helper::fact_calced._inv[x]; }
} // unnamed namespace
mint binom(int n, int k) noexcept { return fact(n) * invfact(k) * invfact(n - k); }
mint fallfact(int n, int k) noexcept { return fact(n) * invfact(n - k); }
mint risefact(int n, int k) noexcept { return fallfact(n + k - 1, k); }
// time complexity: O(min(n, k) * log(n))
mint stirling_2nd(int n, int k) noexcept
{
if(n < k) return 0;
mint res{};
for(int i{}, j{k}; j >= 0; ++i, --j)
if(i & 1) res -= mint::pow(j, n) * invfact(j) * invfact(i);
else res += mint::pow(j, n) * invfact(j) * invfact(i);
return res;
};
// time complexity: O(min(n, k) * log(n))
mint bell(int n, int k) noexcept
{
if(n < k) k = n;
mint res{}, alt{};
for(int i{}, j{k}; j >= 0; ++i, --j)
{
if(i & 1) alt -= invfact(i);
else alt += invfact(i);
res += alt * mint::pow(j, n) * invfact(j);
}
return res;
}
namespace internal_helper {} // namespace internal_helper
} // namespace binomial
#endif // binomial_hpp
#pragma endregion
struct solver; template <class> void main_(); int main() { main_<solver>(); }
template <class solver> void main_()
{
unsigned t = 1;
#ifdef LOCAL
t = 1;
#endif
// t = -1; // infinite loop
// cin >> t; // case number given
while(t--) solver();
}
struct solver
{
solver()
{
using namespace binomial;
int n; cin>>n;
vector nxt(40,vector<i64>(n));
cin>>nxt[0];
for(int i=0; i<39; i++)
{
for(int j=0; j<n; j++)
{
nxt[i+1][j]=nxt[i][j]+nxt[i][(j+nxt[i][j])%n];
}
}
int q; cin>>q;
while(q--)
{
i64 k; cin>>k;
int i=0;
i64 ans=0;
while(k)
{
if(k&1)
{
ans+=nxt[i][ans%n];
}
k>>=1;
i++;
}
cout << ans << "\n";
}
}
};
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0