結果

問題 No.1099 Range Square Sum
ユーザー raoZraoZ
提出日時 2020-06-27 00:48:07
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 285 ms / 2,000 ms
コード長 9,833 bytes
コンパイル時間 1,564 ms
コンパイル使用メモリ 148,600 KB
実行使用メモリ 21,244 KB
最終ジャッジ日時 2024-07-05 03:10:11
合計ジャッジ時間 6,178 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 3 ms
6,944 KB
testcase_05 AC 2 ms
6,948 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 4 ms
6,940 KB
testcase_12 AC 4 ms
6,944 KB
testcase_13 AC 4 ms
6,944 KB
testcase_14 AC 3 ms
6,940 KB
testcase_15 AC 4 ms
6,940 KB
testcase_16 AC 4 ms
6,944 KB
testcase_17 AC 4 ms
6,940 KB
testcase_18 AC 4 ms
6,944 KB
testcase_19 AC 4 ms
6,940 KB
testcase_20 AC 4 ms
6,944 KB
testcase_21 AC 282 ms
21,140 KB
testcase_22 AC 277 ms
21,140 KB
testcase_23 AC 285 ms
21,180 KB
testcase_24 AC 280 ms
21,156 KB
testcase_25 AC 280 ms
21,152 KB
testcase_26 AC 203 ms
21,036 KB
testcase_27 AC 201 ms
21,004 KB
testcase_28 AC 203 ms
21,244 KB
testcase_29 AC 202 ms
21,212 KB
testcase_30 AC 205 ms
21,032 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<iostream>
#include<string>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<math.h>
#include<iomanip>
#include<set>
#include<numeric>
#include<cstring>
#include<cstdio>
#include<functional>
#include<bitset>
#include<limits.h>
#include<cassert>
#include<iterator>
#include<complex>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<time.h>
#include<random>
#include<array>
using namespace std;
using ll = long long;
using ull = unsigned long long;
#define rep(i, a, b) for(int i = a; i < b; i++)
#define rrep(i, a, b) for(int i = b - 1; i >= a; i--)
#define ALL(a) a.begin(), a.end()
using pii = pair<int,int>;
using piii = pair<pii,int>;
using pll = pair<long long, long long>;
using plll = pair<pll, long long>;
// #pragma GCC optimize("Ofast")
#define pcnt __builtin_popcount
#define buli(x) __builtin_popcountll(x)
#define pb push_back
#define mp make_pair
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
#define isSquare(x) (sqrt(x)*sqrt(x) == x)
template<class T>inline bool chmax(T &a, const T &b) {if(a<b){a = b; return 1;} return 0; };
template<class T>inline bool chmin(T &a, const T &b) {if(a>b){a = b; return 1;} return 0; };
inline void in(void){return;}
template <typename First, typename... Rest> void in(First& first, Rest&... rest){cin >> first;in(rest...);return;}
inline void out(void){cout << "\n";return;}
template <typename First, typename... Rest> void out(First first, Rest... rest){cout << first << " ";out(rest...);return;}
const double EPS = 1e-9;
const int mod = 1e9 + 7;
// const int mod = 998244353;
const int INF = 1e9;
const long long INFLL = 1e18;
void iosetup() {
    cin.tie(nullptr);ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
}
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
    os << p.first << " " << p.second;
    return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
    is >> p.first >> p.second;
    return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
    for(int i = 0; i < (int) v.size(); i++) {
        os << v[i] << (i + 1 != v.size() ? " " : "");
    }
    return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
    for(T &in : v) is >> in;
    return is;
}
template<class T> vector<T> make_vec(size_t a) {return vector<T>(a); }
template<class T, class... Ts> auto make_vec(size_t a, Ts... ts){
    return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
template<class S, class T> pair<S,T> operator+(const pair<S,T> &s, const pair<S, T>& t){return pair<S,T>(s.first+t.first, s.second+t.second);}
template<class S, class T> pair<S,T> operator-(const pair<S,T> &s, const pair<S, T>& t){return pair<S,T>(s.first-t.first, s.second-t.second);}
template<class S, class T> pair<S,T> operator*(const pair<S,T> &s, const S& t){return pair<S,T>(s.first*t, s.second*t);}
template <typename T> void Exit(T first){cout << first << endl;exit(0); };
template< int mod > struct ModInt {
    unsigned x; ModInt() : x(0) {}
    ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
    ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}
    ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}
    ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}
    ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}
    ModInt operator-() const { return ModInt(-x); }
    ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
    ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
    ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
    ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
    bool operator==(const ModInt &p) const { return x == p.x; }
    bool operator!=(const ModInt &p) const { return x != p.x; }
    ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); }return ModInt(u);}
    ModInt pow(int64_t n) const {ModInt ret(1), mul(x); while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}
    friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x;}
    friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); }
    static int get_mod() { return mod; }
}; using modint = ModInt< mod >;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
const pii dxy[4] = {pii(1,0), pii(0, 1), pii(-1, 0), pii(0, -1)};
bool range(int a, int b, int x){if(a <= x and x < b)return true;else return false;}
bool range(int a, int b, int c, int d, pii p){if(a <= p.first and p.first < b and c <= p.second and p.second < d) return true;else return false;}

/**
 * @brief Lazy-Segment-Tree(遅延伝搬セグメント木)
 * @docs docs/lazy-segment-tree.md
 */
template< typename Monoid, typename OperatorMonoid = Monoid >
struct LazySegmentTree {
  using F = function< Monoid(Monoid, Monoid) >;
  using G = function< Monoid(Monoid, OperatorMonoid) >;
  using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;

  int sz, height;
  vector< Monoid > data;
  vector< OperatorMonoid > lazy;
  const F f;
  const G g;
  const H h;
  const Monoid M1;
  const OperatorMonoid OM0;

  LazySegmentTree(int n, const F f, const G g, const H h,
                  const Monoid &M1, const OperatorMonoid OM0)
      : f(f), g(g), h(h), M1(M1), OM0(OM0) {
    sz = 1;
    height = 0;
    while(sz < n) sz <<= 1, height++;
    data.assign(2 * sz, M1);
    lazy.assign(2 * sz, OM0);
  }

  void set(int k, const Monoid &x) {
    data[k + sz] = x;
  }

  void build() {
    for(int k = sz - 1; k > 0; k--) {
      data[k] = f(data[2 * k + 0], data[2 * k + 1]);
    }
  }

  inline void propagate(int k) {
    if(lazy[k] != OM0) {
      lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
      lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
      data[k] = apply(k);
      lazy[k] = OM0;
    }
  }

  inline Monoid apply(int k) {
    return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
  }

  inline void recalc(int k) {
    while(k >>= 1) data[k] = f(apply(2 * k + 0), apply(2 * k + 1));
  }

  inline void thrust(int k) {
    for(int i = height; i > 0; i--) propagate(k >> i);
  }

  void update(int a, int b, const OperatorMonoid &x) {
    if(a >= b) return;
    thrust(a += sz);
    thrust(b += sz - 1);
    for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
      if(l & 1) lazy[l] = h(lazy[l], x), ++l;
      if(r & 1) --r, lazy[r] = h(lazy[r], x);
    }
    recalc(a);
    recalc(b);
  }

  Monoid query(int a, int b) {
    if(a >= b) return M1;
    thrust(a += sz);
    thrust(b += sz - 1);
    Monoid L = M1, R = M1;
    for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
      if(l & 1) L = f(L, apply(l++));
      if(r & 1) R = f(apply(--r), R);
    }
    return f(L, R);
  }

  Monoid operator[](const int &k) {
    return query(k, k + 1);
  }

  template< typename C >
  int find_subtree(int a, const C &check, Monoid &M, bool type) {
    while(a < sz) {
      propagate(a);
      Monoid nxt = type ? f(apply(2 * a + type), M) : f(M, apply(2 * a + type));
      if(check(nxt)) a = 2 * a + type;
      else M = nxt, a = 2 * a + 1 - type;
    }
    return a - sz;
  }

  template< typename C >
  int find_first(int a, const C &check) {
    Monoid L = M1;
    if(a <= 0) {
      if(check(f(L, apply(1)))) return find_subtree(1, check, L, false);
      return -1;
    }
    thrust(a + sz);
    int b = sz;
    for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
      if(a & 1) {
        Monoid nxt = f(L, apply(a));
        if(check(nxt)) return find_subtree(a, check, L, false);
        L = nxt;
        ++a;
      }
    }
    return -1;
  }
  
  template< typename C >
  int find_last(int b, const C &check) {
    Monoid R = M1;
    if(b >= sz) {
      if(check(f(apply(1), R))) return find_subtree(1, check, R, true);
      return -1;
    }
    thrust(b + sz - 1);
    int a = sz;
    for(b += sz; a < b; a >>= 1, b >>= 1) {
      if(b & 1) {
        Monoid nxt = f(apply(--b), R);
        if(check(nxt)) return find_subtree(b, check, R, true);
        R = nxt;
      }
    }
    return -1;
  }
};
// using pi = pair< mint, int >;
// using qi = pair< mint, mint >;
// auto f = [](const pi &a, const pi &b) -> pi {
// return {a.first + b.first, a.second + b.second};
// };
// auto g = [](const pi &a, const qi &b) -> pi {
// return {a.first * b.first + mint(a.second) * b.second, a.second};
// };
// auto h = [](const qi &a, const qi &b) -> qi {
// return {a.first * b.first, a.second * b.first + b.second};
// };
// LazySegmentTree< pi, qi > seg(N, f, g, h, pi(0, 0), pi(1, 0));

using P = tuple<ll,ll,ll>;

int main(){
    iosetup();
    int n; cin >> n;
    vector<ll> a(n); cin >> a;
    auto f = [](P x, P y){
        ll a, b, c, d, e, f;
        tie(a, b, c) = x;
        tie(d, e, f) = y;
        return P(a + d, b + e, c + f);
    };
    auto g = [](P x, ll y) -> P{
        ll a, b, c;
        tie(a, b, c) = x;
        return P(a + 2 * b * y + c * y * y, b + y * c, c);
    };
    auto h = [](ll a, ll b){
        return a + b;
    };
    LazySegmentTree< P, ll > seg(n, f, g, h, P(0, 0, 0), 0);
    rep(i, 0, n) seg.set(i, P(a[i] * a[i], a[i], 1));
    seg.build();
    int Q; cin >> Q;
    while(Q--){
        ll t, l, r, x;
        cin >> t >> l >> r; l--;
        if(t == 1){
            cin >> x;
            seg.update(l, r, x);
        }else{
            ll a, b, c;
            tie(a, b, c) = seg.query(l, r);
            cout << a << endl;
        }
    }

    return 0;
}
0