結果
| 問題 |
No.1099 Range Square Sum
|
| コンテスト | |
| ユーザー |
raoZ
|
| 提出日時 | 2020-06-27 00:48:07 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 293 ms / 2,000 ms |
| コード長 | 9,833 bytes |
| コンパイル時間 | 1,558 ms |
| コンパイル使用メモリ | 142,300 KB |
| 最終ジャッジ日時 | 2025-01-11 12:23:12 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 30 |
ソースコード
#include<iostream>
#include<string>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<math.h>
#include<iomanip>
#include<set>
#include<numeric>
#include<cstring>
#include<cstdio>
#include<functional>
#include<bitset>
#include<limits.h>
#include<cassert>
#include<iterator>
#include<complex>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<time.h>
#include<random>
#include<array>
using namespace std;
using ll = long long;
using ull = unsigned long long;
#define rep(i, a, b) for(int i = a; i < b; i++)
#define rrep(i, a, b) for(int i = b - 1; i >= a; i--)
#define ALL(a) a.begin(), a.end()
using pii = pair<int,int>;
using piii = pair<pii,int>;
using pll = pair<long long, long long>;
using plll = pair<pll, long long>;
// #pragma GCC optimize("Ofast")
#define pcnt __builtin_popcount
#define buli(x) __builtin_popcountll(x)
#define pb push_back
#define mp make_pair
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
#define isSquare(x) (sqrt(x)*sqrt(x) == x)
template<class T>inline bool chmax(T &a, const T &b) {if(a<b){a = b; return 1;} return 0; };
template<class T>inline bool chmin(T &a, const T &b) {if(a>b){a = b; return 1;} return 0; };
inline void in(void){return;}
template <typename First, typename... Rest> void in(First& first, Rest&... rest){cin >> first;in(rest...);return;}
inline void out(void){cout << "\n";return;}
template <typename First, typename... Rest> void out(First first, Rest... rest){cout << first << " ";out(rest...);return;}
const double EPS = 1e-9;
const int mod = 1e9 + 7;
// const int mod = 998244353;
const int INF = 1e9;
const long long INFLL = 1e18;
void iosetup() {
cin.tie(nullptr);ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template<class T> vector<T> make_vec(size_t a) {return vector<T>(a); }
template<class T, class... Ts> auto make_vec(size_t a, Ts... ts){
return vector<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...));
}
template<class S, class T> pair<S,T> operator+(const pair<S,T> &s, const pair<S, T>& t){return pair<S,T>(s.first+t.first, s.second+t.second);}
template<class S, class T> pair<S,T> operator-(const pair<S,T> &s, const pair<S, T>& t){return pair<S,T>(s.first-t.first, s.second-t.second);}
template<class S, class T> pair<S,T> operator*(const pair<S,T> &s, const S& t){return pair<S,T>(s.first*t, s.second*t);}
template <typename T> void Exit(T first){cout << first << endl;exit(0); };
template< int mod > struct ModInt {
unsigned x; ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {if((x += p.x) >= mod) x -= mod;return *this;}
ModInt &operator-=(const ModInt &p) {if((x += mod - p.x) >= mod) x -= mod;return *this;}
ModInt &operator*=(const ModInt &p) {x = (int) (1LL * x * p.x % mod);return *this;}
ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); }return ModInt(u);}
ModInt pow(int64_t n) const {ModInt ret(1), mul(x); while(n > 0) {if(n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}
friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x;}
friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); }
static int get_mod() { return mod; }
}; using modint = ModInt< mod >;
const int dx[4] = {1, 0, -1, 0};
const int dy[4] = {0, 1, 0, -1};
const pii dxy[4] = {pii(1,0), pii(0, 1), pii(-1, 0), pii(0, -1)};
bool range(int a, int b, int x){if(a <= x and x < b)return true;else return false;}
bool range(int a, int b, int c, int d, pii p){if(a <= p.first and p.first < b and c <= p.second and p.second < d) return true;else return false;}
/**
* @brief Lazy-Segment-Tree(遅延伝搬セグメント木)
* @docs docs/lazy-segment-tree.md
*/
template< typename Monoid, typename OperatorMonoid = Monoid >
struct LazySegmentTree {
using F = function< Monoid(Monoid, Monoid) >;
using G = function< Monoid(Monoid, OperatorMonoid) >;
using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >;
int sz, height;
vector< Monoid > data;
vector< OperatorMonoid > lazy;
const F f;
const G g;
const H h;
const Monoid M1;
const OperatorMonoid OM0;
LazySegmentTree(int n, const F f, const G g, const H h,
const Monoid &M1, const OperatorMonoid OM0)
: f(f), g(g), h(h), M1(M1), OM0(OM0) {
sz = 1;
height = 0;
while(sz < n) sz <<= 1, height++;
data.assign(2 * sz, M1);
lazy.assign(2 * sz, OM0);
}
void set(int k, const Monoid &x) {
data[k + sz] = x;
}
void build() {
for(int k = sz - 1; k > 0; k--) {
data[k] = f(data[2 * k + 0], data[2 * k + 1]);
}
}
inline void propagate(int k) {
if(lazy[k] != OM0) {
lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]);
lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]);
data[k] = apply(k);
lazy[k] = OM0;
}
}
inline Monoid apply(int k) {
return lazy[k] == OM0 ? data[k] : g(data[k], lazy[k]);
}
inline void recalc(int k) {
while(k >>= 1) data[k] = f(apply(2 * k + 0), apply(2 * k + 1));
}
inline void thrust(int k) {
for(int i = height; i > 0; i--) propagate(k >> i);
}
void update(int a, int b, const OperatorMonoid &x) {
if(a >= b) return;
thrust(a += sz);
thrust(b += sz - 1);
for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if(l & 1) lazy[l] = h(lazy[l], x), ++l;
if(r & 1) --r, lazy[r] = h(lazy[r], x);
}
recalc(a);
recalc(b);
}
Monoid query(int a, int b) {
if(a >= b) return M1;
thrust(a += sz);
thrust(b += sz - 1);
Monoid L = M1, R = M1;
for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) {
if(l & 1) L = f(L, apply(l++));
if(r & 1) R = f(apply(--r), R);
}
return f(L, R);
}
Monoid operator[](const int &k) {
return query(k, k + 1);
}
template< typename C >
int find_subtree(int a, const C &check, Monoid &M, bool type) {
while(a < sz) {
propagate(a);
Monoid nxt = type ? f(apply(2 * a + type), M) : f(M, apply(2 * a + type));
if(check(nxt)) a = 2 * a + type;
else M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template< typename C >
int find_first(int a, const C &check) {
Monoid L = M1;
if(a <= 0) {
if(check(f(L, apply(1)))) return find_subtree(1, check, L, false);
return -1;
}
thrust(a + sz);
int b = sz;
for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if(a & 1) {
Monoid nxt = f(L, apply(a));
if(check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return -1;
}
template< typename C >
int find_last(int b, const C &check) {
Monoid R = M1;
if(b >= sz) {
if(check(f(apply(1), R))) return find_subtree(1, check, R, true);
return -1;
}
thrust(b + sz - 1);
int a = sz;
for(b += sz; a < b; a >>= 1, b >>= 1) {
if(b & 1) {
Monoid nxt = f(apply(--b), R);
if(check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
// using pi = pair< mint, int >;
// using qi = pair< mint, mint >;
// auto f = [](const pi &a, const pi &b) -> pi {
// return {a.first + b.first, a.second + b.second};
// };
// auto g = [](const pi &a, const qi &b) -> pi {
// return {a.first * b.first + mint(a.second) * b.second, a.second};
// };
// auto h = [](const qi &a, const qi &b) -> qi {
// return {a.first * b.first, a.second * b.first + b.second};
// };
// LazySegmentTree< pi, qi > seg(N, f, g, h, pi(0, 0), pi(1, 0));
using P = tuple<ll,ll,ll>;
int main(){
iosetup();
int n; cin >> n;
vector<ll> a(n); cin >> a;
auto f = [](P x, P y){
ll a, b, c, d, e, f;
tie(a, b, c) = x;
tie(d, e, f) = y;
return P(a + d, b + e, c + f);
};
auto g = [](P x, ll y) -> P{
ll a, b, c;
tie(a, b, c) = x;
return P(a + 2 * b * y + c * y * y, b + y * c, c);
};
auto h = [](ll a, ll b){
return a + b;
};
LazySegmentTree< P, ll > seg(n, f, g, h, P(0, 0, 0), 0);
rep(i, 0, n) seg.set(i, P(a[i] * a[i], a[i], 1));
seg.build();
int Q; cin >> Q;
while(Q--){
ll t, l, r, x;
cin >> t >> l >> r; l--;
if(t == 1){
cin >> x;
seg.update(l, r, x);
}else{
ll a, b, c;
tie(a, b, c) = seg.query(l, r);
cout << a << endl;
}
}
return 0;
}
raoZ