結果
問題 | No.1095 Smallest Kadomatsu Subsequence |
ユーザー | bluemegane |
提出日時 | 2020-06-27 17:28:10 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 8,836 bytes |
コンパイル時間 | 1,107 ms |
コンパイル使用メモリ | 109,312 KB |
実行使用メモリ | 54,112 KB |
最終ジャッジ日時 | 2024-07-05 18:00:41 |
合計ジャッジ時間 | 6,795 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 27 ms
23,936 KB |
testcase_01 | AC | 27 ms
18,560 KB |
testcase_02 | AC | 27 ms
18,688 KB |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | TLE | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System.Collections.Generic; using static System.Math; using System; public class SB_BinarySearchTree<T> where T : IComparable { public class Node { public T Value; public Node LChild; public Node RChild; public int Count; public Node(T v) { Value = v; Count = 1; } } static Random _rnd = new Random(); public static int Count(Node t) { return t == null ? 0 : t.Count; } static Node Update(Node t) { t.Count = Count(t.LChild) + Count(t.RChild) + 1; return t; } public static Node Merge(Node l, Node r) { if (l == null || r == null) return l == null ? r : l; if (Count(l) / (double)(Count(l) + Count(r)) > _rnd.NextDouble()) { l.RChild = Merge(l.RChild, r); return Update(l); } else { r.LChild = Merge(l, r.LChild); return Update(r); } } public static Tuple<Node, Node> Split(Node t, int k) { if (t == null) return new Tuple<Node, Node>(null, null); if (k <= Count(t.LChild)) { var s = Split(t.LChild, k); t.LChild = s.Item2; return new Tuple<Node, Node>(s.Item1, Update(t)); } else { var s = Split(t.RChild, k - Count(t.LChild) - 1); t.RChild = s.Item1; return new Tuple<Node, Node>(Update(t), s.Item2); } } public static Node Remove(Node t, T v) { if (Find(t, v) == null) return t; return RemoveAt(t, LowerBound(t, v)); } public static Node RemoveAt(Node t, int k) { var s = Split(t, k); var s2 = Split(s.Item2, 1); return Merge(s.Item1, s2.Item2); } public static bool Contains(Node t, T v) { return Find(t, v) != null; } public static Node Find(Node t, T v) { while (t != null) { var cmp = t.Value.CompareTo(v); if (cmp > 0) t = t.LChild; else if (cmp < 0) t = t.RChild; else break; } return t; } public static Node FindByIndex(Node t, int idx) { if (t == null) return null; var currentIdx = Count(t) - Count(t.RChild) - 1; while (t != null) { if (currentIdx == idx) return t; if (currentIdx > idx) { t = t.LChild; currentIdx -= (Count(t == null ? null : t.RChild) + 1); } else { t = t.RChild; currentIdx += (Count(t == null ? null : t.LChild) + 1); } } return null; } public static int UpperBound(Node t, T v) { var torg = t; if (t == null) return -1; var ret = int.MaxValue; var idx = Count(t) - Count(t.RChild) - 1; while (t != null) { var cmp = t.Value.CompareTo(v); if (cmp > 0) { ret = Min(ret, idx); t = t.LChild; idx -= (Count(t == null ? null : t.RChild) + 1); } else if (cmp <= 0) { t = t.RChild; idx += (Count(t == null ? null : t.LChild) + 1); } } return ret == int.MaxValue ? Count(torg) : ret; } public static int LowerBound(Node t, T v) { var torg = t; if (t == null) return -1; var idx = Count(t) - Count(t.RChild) - 1; var ret = int.MaxValue; while (t != null) { var cmp = t.Value.CompareTo(v); if (cmp >= 0) { if (cmp == 0) ret = Min(ret, idx); t = t.LChild; if (t == null) ret = Min(ret, idx); idx -= t == null ? 0 : (Count(t.RChild) + 1); } else if (cmp < 0) { t = t.RChild; idx += (Count(t == null ? null : t.LChild) + 1); if (t == null) return idx; } } return ret == int.MaxValue ? Count(torg) : ret; } public static Node Insert(Node t, T v) { var ub = LowerBound(t, v); return InsertByIdx(t, ub, v); } static Node InsertByIdx(Node t, int k, T v) { var s = Split(t, k); return Merge(Merge(s.Item1, new Node(v)), s.Item2); } public static IEnumerable<T> Enumerate(Node t) { var ret = new List<T>(); Enumerate(t, ret); return ret; } static void Enumerate(Node t, List<T> ret) { if (t == null) return; Enumerate(t.LChild, ret); ret.Add(t.Value); Enumerate(t.RChild, ret); } } public class Set<T> where T : IComparable { protected SB_BinarySearchTree<T>.Node _root; public T this[int idx] { get { return ElementAt(idx); } } public int Count() { return SB_BinarySearchTree<T>.Count(_root); } public virtual void Insert(T v) { if (_root == null) _root = new SB_BinarySearchTree<T>.Node(v); else { if (SB_BinarySearchTree<T>.Find(_root, v) != null) return; _root = SB_BinarySearchTree<T>.Insert(_root, v); } } public void Clear() { _root = null; } public void Remove(T v) { _root = SB_BinarySearchTree<T>.Remove(_root, v); } public bool Contains(T v) { return SB_BinarySearchTree<T>.Contains(_root, v); } public T ElementAt(int k) { var node = SB_BinarySearchTree<T>.FindByIndex(_root, k); if (node == null) throw new IndexOutOfRangeException(); return node.Value; } public int Count(T v) { return SB_BinarySearchTree<T>.UpperBound(_root, v) - SB_BinarySearchTree<T>.LowerBound(_root, v); } public int LowerBound(T v) { return SB_BinarySearchTree<T>.LowerBound(_root, v); } public int UpperBound(T v) { return SB_BinarySearchTree<T>.UpperBound(_root, v); } public Tuple<int, int> EqualRange(T v) { if (!Contains(v)) return new Tuple<int, int>(-1, -1); return new Tuple<int, int>(SB_BinarySearchTree<T>.LowerBound(_root, v), SB_BinarySearchTree<T>.UpperBound(_root, v) - 1); } public List<T> ToList() { return new List<T>(SB_BinarySearchTree<T>.Enumerate(_root)); } } public class MultiSet<T> : Set<T> where T : IComparable { public override void Insert(T v) { if (_root == null) _root = new SB_BinarySearchTree<T>.Node(v); else _root = SB_BinarySearchTree<T>.Insert(_root, v); } } public class Hello { static void Main() { var n = int.Parse(Console.ReadLine().Trim()); string[] line = Console.ReadLine().Trim().Split(' '); var a = Array.ConvertAll(line, int.Parse); var bL = new int[n]; var br = new int[n]; bL[0] = a[0]; br[n - 1] = a[n - 1]; for (int i = 1; i < n; i++) { if (a[i] < bL[i - 1]) bL[i] = a[i]; else bL[i] = bL[i - 1]; if (a[n - 1 - i] < br[n - i]) br[n - 1 - i] = a[n - 1 - i]; else br[n - 1 - i] = br[n - i]; } var ans1 = getAns1(n, a, bL, br); var ans2 = getAns2(n, a); int ans; if (ans1 == -1 && ans2 == -1) ans = -1; else if (ans1 == -1) ans = ans2; else if (ans2 == -1) ans = ans1; else ans = Min(ans1, ans2); Console.WriteLine(ans); } static int getAns2(int n, int[] a) { var ssL = new Set<int>(); var ssr = new Set<int>(); for (int i = 1; i < n; i++) ssr.Insert(a[i]); var res = int.MaxValue; for (int i = 1; i < n - 1; i++) { ssL.Insert(a[i - 1]); ssr.Remove(a[i]); var p = ssL.UpperBound(a[i]); var p2 = ssr.UpperBound(a[i]); if (p <= i - 1 && p2 <= n - 1 - i) { if (a[i] < ssL.ElementAt(p) && a[i] < ssr.ElementAt(p2)) { res = Min(res, a[i] + ssL.ElementAt(p) + ssr.ElementAt(p2)); } } } if (res == int.MaxValue) return -1; else return res; } static int getAns1(int n, int[] a, int[] bL, int[] br) { var res = int.MaxValue; for (int i = 1; i < n - 1; i++) { if (a[i] > bL[i - 1] && a[i] > br[i + 1]) { var t = a[i] + bL[i - 1] + br[i + 1]; res = Min(res, t); } } if (res == int.MaxValue) return -1; else return res; } }