結果

問題 No.1099 Range Square Sum
ユーザー masayoshi361
提出日時 2020-06-27 19:03:01
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 800 ms / 2,000 ms
コード長 7,576 bytes
コンパイル時間 2,599 ms
コンパイル使用メモリ 188,072 KB
実行使用メモリ 6,656 KB
最終ジャッジ日時 2024-07-05 19:28:23
合計ジャッジ時間 10,640 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 1
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

//header
#ifdef LOCAL
#include "cxx-prettyprint-master/prettyprint.hpp"
#define debug(x) cout << x << endl
#else
#define debug(...) 42
#endif
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
//types
using namespace std;
using ll = long long;
using ul = unsigned long long;
using ld = long double;
typedef pair < ll , ll > Pl;
typedef pair < int, int > Pi;
typedef vector<ll> vl;
typedef vector<int> vi;
template< typename T >
using mat = vector< vector< T > >;
template< int mod >
struct modint {
int x;
modint() : x(0) {}
modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
modint &operator+=(const modint &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
modint &operator-=(const modint &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
modint &operator*=(const modint &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint(-x); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return x == p.x; }
bool operator!=(const modint &p) const { return x != p.x; }
modint inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return modint(u);
}
modint pow(int64_t n) const {
modint ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const modint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, modint &a) {
int64_t t;
is >> t;
a = modint< mod >(t);
return (is);
}
static int get_mod() { return mod; }
};
//abreviations
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
#define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define SZ(x) ((int)(x).size())
#define pb(x) push_back(x)
#define eb(x) emplace_back(x)
#define mp make_pair
#define print(x) cout << x << endl
#define vsum(x) accumulate(x, 0LL)
#define vmax(a) *max_element(all(a))
#define vmin(a) *min_element(all(a))
#define lb(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define ub(c, x) distance((c).begin(), upper_bound(all(c), (x)))
//functions
ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
template< typename T >
T mypow(T x, ll n) {
T ret = 1;
while(n > 0) {
if(n & 1) (ret *= x);
(x *= x);
n >>= 1;
}
return ret;
}
ll modpow(ll x, ll n, const ll mod) {
ll ret = 1;
while(n > 0) {
if(n & 1) (ret *= x);
(x *= x);
n >>= 1;
x%=mod;
ret%=mod;
}
return ret;
}
uint64_t my_rand(void) {
static uint64_t x = 88172645463325252ULL;
x = x ^ (x << 13); x = x ^ (x >> 7);
return x = x ^ (x << 17);
}
//graph template
template< typename T >
struct edge {
int src, to;
T cost;
edge(int to, T cost) : src(-1), to(to), cost(cost) {}
edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template< typename T >
using Edges = vector< edge< T > >;
template< typename T >
using WeightedGraph = vector< Edges< T > >;
using UnWeightedGraph = vector< vector< int > >;
//constant
//#define inf 1000000005LL
#define inf 4000000000000000005LL
#define mod 1000000007LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.0001;
const long double PI = 3.141592653589793;
//library
template< typename T >
struct SqrtDecomposition{
//change sqrtN with 1 for debug
const ll sqrtN = 30;
int N, K;
//write here
vector<T> data;
vector<T> bucket;
vector<T> bucket2;
vector<T> lazy;
SqrtDecomposition(int n) : N(n){
K = (N+sqrtN-1)/sqrtN;
data.assign(K*sqrtN, 0);
bucket.assign(K, 0);
bucket2.assign(K, 0);
lazy.assign(K, 0);
}
void update(int x, int y, T v){
//if x, y is located in the same bucket.
if(x/sqrtN==y/sqrtN){
propagate(x/sqrtN);
rep(i, x, y){
bucket2[x/sqrtN]+=v*data[i]*2+v*v;
data[i]+=v;
bucket[x/sqrtN]+=v;
}
return;
}
int l = (x+sqrtN-1)/sqrtN;
int r = y/sqrtN;
//left
if(l>0)propagate(l-1);
rep(i, x, l*sqrtN){
bucket2[l-1]+=v*data[i]*2+v*v;
data[i]+=v;
bucket[l-1]+=v;
}
//center
rep(i, l, r){
bucket2[i]+=bucket[i]*v*2+v*v*sqrtN;
bucket[i]+=v*sqrtN;
lazy[i]+=v;
}
//right
propagate(r);
rep(i, r*sqrtN, y){
bucket2[r]+=v*data[i]*2+v*v;
data[i]+=v;
bucket[r]+=v;
}
}
void propagate(int a){
rep(i, a*sqrtN, (a+1)*sqrtN){
data[i]+=lazy[a];
}
lazy[a] = 0;
}
T query(int x, int y){
T res = 0;
if(x/sqrtN==y/sqrtN){
propagate(x/sqrtN);
rep(i, x, y){
res+=data[i]*data[i];
}
return res;
}
int l = (x+sqrtN-1)/sqrtN;
int r = y/sqrtN;
if(l>0)propagate(l-1);
rep(i, x, l*sqrtN){
res+=data[i]*data[i];
}
rep(i, l, r){
res+=bucket2[i];
}
propagate(r);
rep(i, r*sqrtN, y){
res+=data[i]*data[i];
}
return res;
}
};
int main(){
int n; cin>>n;
vl a(n);
rep(i, n)cin>>a[i];
SqrtDecomposition<ll> sd(n);
rep(i, n){
sd.update(i, i+1, a[i]);
}
int q; cin>>q;
rep(_, q){
int t;
cin>>t;
if(t==1){
ll l, r, v; cin>>l>>r>>v;
l--;
sd.update(l, r, v);
}else{
int l, r; cin>>l>>r;l--;
print(sd.query(l, r));
}
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0