結果
問題 | No.1100 Boxes |
ユーザー | ningenMe |
提出日時 | 2020-06-27 19:09:18 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 121 ms / 2,000 ms |
コード長 | 10,473 bytes |
コンパイル時間 | 2,279 ms |
コンパイル使用メモリ | 211,972 KB |
実行使用メモリ | 14,252 KB |
最終ジャッジ日時 | 2024-07-05 19:36:54 |
合計ジャッジ時間 | 4,788 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 4 ms
5,376 KB |
testcase_20 | AC | 12 ms
5,376 KB |
testcase_21 | AC | 46 ms
8,076 KB |
testcase_22 | AC | 105 ms
13,096 KB |
testcase_23 | AC | 48 ms
8,080 KB |
testcase_24 | AC | 55 ms
8,668 KB |
testcase_25 | AC | 57 ms
8,920 KB |
testcase_26 | AC | 117 ms
13,772 KB |
testcase_27 | AC | 107 ms
12,948 KB |
testcase_28 | AC | 25 ms
5,760 KB |
testcase_29 | AC | 109 ms
13,460 KB |
testcase_30 | AC | 101 ms
12,520 KB |
testcase_31 | AC | 30 ms
6,328 KB |
testcase_32 | AC | 61 ms
9,212 KB |
testcase_33 | AC | 121 ms
14,056 KB |
testcase_34 | AC | 119 ms
14,124 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 112 ms
14,252 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 52 ms
8,568 KB |
testcase_39 | AC | 118 ms
13,960 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define ALL(obj) (obj).begin(),(obj).end() #define SPEED cin.tie(0);ios::sync_with_stdio(false); template<class T> using PQ = priority_queue<T>; template<class T> using PQR = priority_queue<T,vector<T>,greater<T>>; constexpr long long MOD = (long long)1e9 + 7; constexpr long long MOD2 = 998244353; constexpr long long HIGHINF = (long long)1e18; constexpr long long LOWINF = (long long)1e15; constexpr long double PI = 3.1415926535897932384626433L; template <class T> vector<T> multivector(size_t N,T init){return vector<T>(N,init);} template <class... T> auto multivector(size_t N,T... t){return vector<decltype(multivector(t...))>(N,multivector(t...));} template <class T> void corner(bool flg, T hoge) {if (flg) {cout << hoge << endl; exit(0);}} template <class T, class U>ostream &operator<<(ostream &o, const map<T, U>&obj) {o << "{"; for (auto &x : obj) o << " {" << x.first << " : " << x.second << "}" << ","; o << " }"; return o;} template <class T>ostream &operator<<(ostream &o, const set<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const multiset<T>&obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr) o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} template <class T>ostream &operator<<(ostream &o, const vector<T>&obj) {o << "{"; for (int i = 0; i < (int)obj.size(); ++i)o << (i > 0 ? ", " : "") << obj[i]; o << "}"; return o;} template <class T, class U>ostream &operator<<(ostream &o, const pair<T, U>&obj) {o << "{" << obj.first << ", " << obj.second << "}"; return o;} template <template <class tmp> class T, class U> ostream &operator<<(ostream &o, const T<U> &obj) {o << "{"; for (auto itr = obj.begin(); itr != obj.end(); ++itr)o << (itr != obj.begin() ? ", " : "") << *itr; o << "}"; return o;} void print(void) {cout << endl;} template <class Head> void print(Head&& head) {cout << head;print();} template <class Head, class... Tail> void print(Head&& head, Tail&&... tail) {cout << head << " ";print(forward<Tail>(tail)...);} template <class T> void chmax(T& a, const T b){a=max(a,b);} template <class T> void chmin(T& a, const T b){a=min(a,b);} void YN(bool flg) {cout << (flg ? "YES" : "NO") << endl;} void Yn(bool flg) {cout << (flg ? "Yes" : "No") << endl;} void yn(bool flg) {cout << (flg ? "yes" : "no") << endl;} /* * @title NumberTheoreticTransform */ template<int mod, int root = 3> class NumberTheoreticTransform { inline static constexpr long long gcd(long long a, long long b) { return (b ? gcd(b, a % b):a); } inline static long long ext_gcd(long long a, long long b, long long &x, long long &y) { long long res; if (b == 0) res = a,x = 1,y = 0; else res = ext_gcd(b, a%b, y, x), y -= a/b * x; return res; } inline static long long inv_mod(long long a, long long b) { long long x, y; ext_gcd(a, b, x, y); return (x%b+b)%b; } inline static long long pow_mod(long long x, long long n, long long m) { long long res = 1; for (; n > 0; n >>= 1, (x *= x) %= m) if (n & 1) (res *= x) %= m; return res; } inline static long long garner(vector<long long> b, vector<long long> m, long long d){ int N=b.size(); vector<long long> coe(N+1,1),val(N+1,0); long long g,gl,gr,sum=accumulate(b.begin(),b.end(),0LL); //互いに素になるように処理 for (int l = 0; l < N; ++l) { for (int r = l+1; r < N; ++r) { g = gcd(m[l], m[r]); if (sum && (b[l] - b[r]) % g != 0) return -1; m[l] /= g, m[r] /= g; gl = gcd(m[l], g), gr = g/gl; do { g = gcd(gl, gr); gl *= g, gr /= g; } while (g != 1); m[l] *= gl, m[r] *= gr; b[l] %= m[l], b[r] %= m[r]; } } if(!sum) { long long lcm = 1; for(auto& e:m) (lcm*=e)%=d; return lcm; } m.push_back(d); for(int i = 0; i < N; ++i) { long long t = (b[i] - val[i]) * inv_mod(coe[i], m[i]); ((t %= m[i]) += m[i]) %= m[i]; for (int j = i+1; j <= N; ++j) { (val[j] += t * coe[j]) %= m[j]; (coe[j] *= m[i]) %= m[j]; } } return val.back(); } inline static void ntt(vector<long long>& f,int sgn=1) { int N = f.size(); int h = pow_mod(root, (mod - 1) / N, mod); if (sgn == -1) h = inv_mod(h, mod); for (int i = 0,j = 1; j < N - 1; ++j) { for (int k = N >> 1; k > (i ^= k); k >>= 1); if (j < i) swap(f[i], f[j]); } for (int i = 1,j = 2; i < N; i *= 2, j *= 2) { long long w = 1, base = pow_mod(h, N / j, mod); for(int k= 0;k < i; ++k, (w *= base) %= mod) { for (int l = k; l < N; l += j) { long long u = f[l]; long long d = f[l + i] * w % mod; f[l] = u + d; if (f[l] >= mod) f[l] -= mod; f[l + i] = u - d; if (f[l + i] < 0) f[l + i] += mod; } } } for (auto& x : f) if (x < 0) x += mod; } public: inline static vector<long long> convolution(vector<long long> g,vector<long long> h){ int N; for(N=1;N<g.size()+h.size(); N*=2); vector<long long> f(N); g.resize(N); h.resize(N); ntt(g); ntt(h); for(int i = 0; i < N; ++i) (f[i] = g[i]*h[i]) %= mod; ntt(f,-1); long long inv = inv_mod(N, mod); for (auto& x : f) x = x * inv % mod; return f; } inline static vector<long long> convolution_arbitrarymod(vector<long long> g, vector<long long> h){ for (auto& a : g) a %= mod; for (auto& a : h) a %= mod; const int mod1=167772161; const int mod2=469762049; const int mod3=1224736769; auto x = NumberTheoreticTransform<mod1>::convolution(g, h); auto y = NumberTheoreticTransform<mod2>::convolution(g, h); auto z = NumberTheoreticTransform<mod3>::convolution(g, h); vector<long long> res(x.size()),b(3),m(3); for(int i=0; i < x.size(); ++i){ m[0] = mod1, b[0] = x[i]; m[1] = mod2, b[1] = y[i]; m[2] = mod3, b[2] = z[i]; res[i] = garner(b, m, mod); } return res; } }; //Pow_Mod O(log(n)) long long PowMod(long long x, long long n, long long mod) { long long res = 1; for (; n > 0; n >>= 1, (x *= x) %= mod) if (n & 1) (res *= x) %= mod; return res; } //Inv_Mod O(log(mod)) long long InvMod(long long x, long long mod){ return PowMod(x,mod-2,mod); } /* * @title CombinationMod */ template<long long mod> class CombinationMod { vector<long long> fac,finv,inv; public: CombinationMod(int N) : fac(N + 1), finv(N + 1), inv(N + 1) { fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1; for (int i = 2; i <= N; ++i) { fac[i] = fac[i - 1] * i % mod; inv[i] = mod - inv[mod%i] * (mod / i) % mod; finv[i] = finv[i - 1] * inv[i] % mod; } } inline long long binom(int n, int k) { return ((n < 0 || k < 0 || n < k) ? 0 : fac[n] * (finv[k] * finv[n - k] % mod) % mod); } inline long long factorial(int n) { return fac[n]; } }; /* * @title ModInt */ template<long long mod> class ModInt { public: long long x; constexpr ModInt():x(0) { // do nothing } constexpr ModInt(long long y) : x(y>=0?(y%mod): (mod - (-y)%mod)%mod) { // do nothing } ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator+=(const long long y) { ModInt p(y); if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator+=(const int y) { ModInt p(y); if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const long long y) { ModInt p(y); if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const int y) { ModInt p(y); if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (x * p.x % mod); return *this; } ModInt &operator*=(const long long y) { ModInt p(y); x = (x * p.x % mod); return *this; } ModInt &operator*=(const int y) { ModInt p(y); x = (x * p.x % mod); return *this; } ModInt &operator^=(const ModInt &p) { x = (x ^ p.x) % mod; return *this; } ModInt &operator^=(const long long y) { ModInt p(y); x = (x ^ p.x) % mod; return *this; } ModInt &operator^=(const int y) { ModInt p(y); x = (x ^ p.x) % mod; return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inv(); return *this; } ModInt &operator/=(const long long y) { ModInt p(y); *this *= p.inv(); return *this; } ModInt &operator/=(const int y) { ModInt p(y); *this *= p.inv(); return *this; } ModInt operator=(const int y) { ModInt p(y); *this = p; return *this; } ModInt operator=(const long long y) { ModInt p(y); *this = p; return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator++() { x++; if(x>=mod) x-=mod; return *this; } ModInt operator--() { x--; if(x<0) x+=mod; return *this; } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } ModInt operator^(const ModInt &p) const { return ModInt(*this) ^= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inv() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(long long n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { long long t; is >> t; a = ModInt<mod>(t); return (is); } }; using modint = ModInt<MOD2>; int main() { ll N,K; cin >> N >> K; CombinationMod<MOD2> CM(K); vector<ll> a(K+1,0),b(K+1,0); for(ll i = 1; i <= K; i += 2) { a[i] = InvMod(CM.factorial(i),MOD2); } for(ll i = 0; i <= K; ++i) { b[i] = ((1-(i%2)*2)*InvMod(CM.factorial(i),MOD2)+MOD2)%MOD2; } auto c = NumberTheoreticTransform<MOD2>::convolution(a,b); modint ans = 0; for(ll i = 0; i <= K; ++i) { modint cnt = CM.factorial(K); cnt *= c[i]; cnt *= PowMod(K-i,N,MOD2); cnt *= InvMod(CM.factorial(K-i),MOD2); ans += cnt; } cout << ans << endl; return 0; }