結果
問題 | No.129 お年玉(2) |
ユーザー | tanimani364 |
提出日時 | 2020-06-29 22:07:19 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 5,898 bytes |
コンパイル時間 | 1,984 ms |
コンパイル使用メモリ | 200,832 KB |
実行使用メモリ | 785,580 KB |
最終ジャッジ日時 | 2024-07-19 06:00:50 |
合計ジャッジ時間 | 25,351 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | MLE | - |
testcase_01 | MLE | - |
testcase_02 | MLE | - |
testcase_03 | MLE | - |
testcase_04 | MLE | - |
testcase_05 | MLE | - |
testcase_06 | MLE | - |
testcase_07 | MLE | - |
testcase_08 | MLE | - |
testcase_09 | MLE | - |
testcase_10 | MLE | - |
testcase_11 | MLE | - |
testcase_12 | MLE | - |
testcase_13 | MLE | - |
testcase_14 | MLE | - |
testcase_15 | MLE | - |
testcase_16 | MLE | - |
testcase_17 | MLE | - |
testcase_18 | MLE | - |
testcase_19 | MLE | - |
testcase_20 | MLE | - |
testcase_21 | MLE | - |
testcase_22 | MLE | - |
testcase_23 | MLE | - |
testcase_24 | MLE | - |
testcase_25 | MLE | - |
testcase_26 | MLE | - |
testcase_27 | MLE | - |
testcase_28 | MLE | - |
testcase_29 | MLE | - |
testcase_30 | MLE | - |
testcase_31 | MLE | - |
testcase_32 | MLE | - |
testcase_33 | MLE | - |
testcase_34 | MLE | - |
testcase_35 | MLE | - |
testcase_36 | MLE | - |
testcase_37 | MLE | - |
testcase_38 | MLE | - |
testcase_39 | MLE | - |
testcase_40 | MLE | - |
testcase_41 | MLE | - |
testcase_42 | MLE | - |
testcase_43 | MLE | - |
testcase_44 | MLE | - |
testcase_45 | MLE | - |
testcase_46 | MLE | - |
testcase_47 | MLE | - |
testcase_48 | MLE | - |
コンパイルメッセージ
main.cpp: In static member function 'static int ArbitraryModInt::set_mod(int)': main.cpp:177:3: warning: no return statement in function returning non-void [-Wreturn-type] 177 | } | ^
ソースコード
#include <bits/stdc++.h> #define rep(i, a) for (int i = (int)0; i < (int)a; ++i) #define rrep(i, a) for (int i = (int)a - 1; i >= 0; --i) #define REP(i, a, b) for (int i = (int)a; i < (int)b; ++i) #define RREP(i, a, b) for (int i = (int)a - 1; i >= b; --i) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define popcount __builtin_popcount using ll = long long; constexpr ll mod = 1e9 + 7; constexpr ll INF = 1LL << 60; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } ll gcd(ll n, ll m) { ll tmp; while (m != 0) { tmp = n % m; n = m; m = tmp; } return n; } ll lcm(ll n, ll m) { return abs(n) / gcd(n, m) * abs(m); //gl=xy } using namespace std; template<int mod> struct Modint{ int x; Modint():x(0){} Modint(int64_t y):x((y%mod+mod)%mod){} Modint &operator+=(const Modint &p){ if((x+=p.x)>=mod) x -= mod; return *this; } Modint &operator-=(const Modint &p){ if((x+=mod-p.x)>=mod) x -= mod; return *this; } Modint &operator*=(const Modint &p){ x = (1LL * x * p.x) % mod; return *this; } Modint &operator/=(const Modint &p){ *this *= p.inverse(); return *this; } Modint operator-() const { return Modint(-x); } Modint operator+(const Modint &p) const{ return Modint(*this) += p; } Modint operator-(const Modint &p) const{ return Modint(*this) -= p; } Modint operator*(const Modint &p) const{ return Modint(*this) *= p; } Modint operator/(const Modint &p) const{ return Modint(*this) /= p; } bool operator==(const Modint &p) const { return x == p.x; } bool operator!=(const Modint &p) const{return x != p.x;} Modint inverse() const{//非再帰拡張ユークリッド int a = x, b = mod, u = 1, v = 0; while(b>0){ int t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return Modint(u); } Modint pow(int64_t n) const{//繰り返し二乗法 Modint ret(1), mul(x); while(n>0){ if(n&1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os,const Modint &p){ return os << p.x; } }; using modint = Modint<mod>; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(int k) const { return _fact[k]; } inline T rfact(int k) const { return _rfact[k]; } inline T inv(int k) const { return _inv[k]; } T P(int n, int r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(int p, int q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(int n, int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; struct ArbitraryModInt { int x; ArbitraryModInt() : x(0) {} ArbitraryModInt(int64_t y) : x(y >= 0 ? y % mod() : (mod() - (-y) % mod()) % mod()) {} static int &mod() { static int mod = 0; return mod; } static int set_mod(int md) { mod() = md; } ArbitraryModInt &operator+=(const ArbitraryModInt &p) { if((x += p.x) >= mod()) x -= mod(); return *this; } ArbitraryModInt &operator-=(const ArbitraryModInt &p) { if((x += mod() - p.x) >= mod()) x -= mod(); return *this; } ArbitraryModInt &operator*=(const ArbitraryModInt &p) { unsigned long long a = (unsigned long long) x * p.x; unsigned xh = (unsigned) (a >> 32), xl = (unsigned) a, d, m; asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod())); x = m; return *this; } ArbitraryModInt &operator/=(const ArbitraryModInt &p) { *this *= p.inverse(); return *this; } ArbitraryModInt operator-() const { return ArbitraryModInt(-x); } ArbitraryModInt operator+(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) += p; } ArbitraryModInt operator-(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) -= p; } ArbitraryModInt operator*(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) *= p; } ArbitraryModInt operator/(const ArbitraryModInt &p) const { return ArbitraryModInt(*this) /= p; } bool operator==(const ArbitraryModInt &p) const { return x == p.x; } bool operator!=(const ArbitraryModInt &p) const { return x != p.x; } ArbitraryModInt inverse() const { int a = x, b = mod(), u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ArbitraryModInt(u); } ArbitraryModInt pow(int64_t n) const { ArbitraryModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ArbitraryModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ArbitraryModInt &a) { int64_t t; is >> t; a = ArbitraryModInt(t); return (is); } }; ll dp[10005][10005]; const ll x=1000000000; void comb(){ memset(dp,0,sizeof(dp)); dp[0][0]=1; for(int i=1;i<=10000;++i){ dp[i][0]=1; for(int j=1;j<=1000;++j){ dp[i][j]=(dp[i-1][j-1]+dp[i-1][j])%x; } } } void solve() { ll n,m; cin>>n>>m; ll a=m*1000; n%=a; n/=1000; comb(); cout<<dp[m][n]<<"\n"; } int main() { ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(15); solve(); return 0; }