結果
| 問題 |
No.1105 Many Triplets
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-07-03 21:29:23 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 10 ms / 2,000 ms |
| コード長 | 8,114 bytes |
| コンパイル時間 | 1,975 ms |
| コンパイル使用メモリ | 134,980 KB |
| 実行使用メモリ | 13,036 KB |
| 最終ジャッジ日時 | 2024-09-16 22:35:46 |
| 合計ジャッジ時間 | 3,385 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
#define int long long
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define H pair<int, int>
#define P pair<int, pair<int, int>>
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(int i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define vi vec<int>
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) lower_bound(all(b),(i))-(b).begin()
#define ssp(i,n) (i==(int)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) int quetimes_=(n);rep(qq123_,quetimes_)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
//#define endl "\n"
constexpr int mod = 1e9 + 7;
constexpr int Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = 3 * 1e18;
constexpr int Inf = 15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(bool g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g) u.fs--, u.sc--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll popcount(ll x) {
int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
return sum;
}
class mint {
public:ll v;
mint(ll v = 0) { s(v % mod + mod); }
constexpr static int mod = 1e9 + 7;
constexpr static int fn_ = 6e5 + 5;
static mint fact[fn_], comp[fn_];
mint pow(int x) const {
mint b(v), c(1);
while (x) {
if (x & 1) c *= b;
b *= b;
x >>= 1;
}
return c;
}
inline mint& s(int vv) {
v = vv < mod ? vv : vv - mod;
return *this;
}
inline mint inv()const { return pow(mod - 2); }
inline mint operator-()const { return mint() - *this; }
inline mint& operator+=(const mint b) { return s(v + b.v); }
inline mint& operator-=(const mint b) { return s(v + mod - b.v); }
inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; }
inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; }
inline mint operator+(const mint b) const { return mint(v) += b; }
inline mint operator-(const mint b) const { return mint(v) -= b; }
inline mint operator*(const mint b) const { return mint(v) *= b; }
inline mint operator/(const mint b) const { return mint(v) /= b; }
friend ostream& operator<<(ostream& os, const mint& m) {
return os << m.v;
}
friend istream& operator>>(istream& is, mint& m) {
int x; is >> x; m = mint(x);
return is;
}
bool operator<(const mint& r)const { return v < r.v; }
bool operator>(const mint& r)const { return v > r.v; }
bool operator<=(const mint& r)const { return v <= r.v; }
bool operator>=(const mint& r)const { return v >= r.v; }
bool operator==(const mint& r)const { return v == r.v; }
bool operator!=(const mint& r)const { return v != r.v; }
explicit operator bool()const { return v; }
explicit operator int()const { return v; }
mint comb(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
if (k > * this - k) k = *this - k;
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp * comp[k.v];
}
return fact[v] * comp[k.v] * comp[v - k.v];
}//nCk
mint perm(mint k) {
if (k > * this) return mint();
if (!fact[0]) combinit();
if (v >= fn_) {
mint tmp(1);
for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
return tmp;
}
return fact[v] * comp[v - k.v];
}
static void combinit() {
fact[0] = 1;
for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i);
comp[fn_ - 1] = fact[fn_ - 1].inv();
for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1);
}
}; mint mint::fact[fn_], mint::comp[fn_];
//--------------------------------------------------------------
//---------------------------------------------------------------------
class Matrix {
public:
int h, w;
int dat[30][30];
void init(int height, int width) {
h = height, w = width;
for (int i = 0; i < h; i++)for (int j = 0; j < w; j++)
dat[i][j] = 0;
}
auto operator[](int i) { return dat[i]; }
void operator+=(Matrix& b) {
for (int i = 0; i < h; i++)for (int j = 0; j < w; j++)
dat[i][j] += b.dat[i][j];
}
void operator-=(Matrix& b) {
for (int i = 0; i < h; i++)for (int j = 0; j < w; j++)
dat[i][j] -= b.dat[i][j];
}
Matrix operator+(Matrix& b) {
Matrix c = *this; c += b;
return c;
}
Matrix operator-(Matrix& b) {
Matrix c = *this; c -= b;
return c;
}
Matrix operator*(Matrix& b) {
Matrix c; c.init(h, b.w);
for (int i = 0; i < h; i++)for (int j = 0; j < w; j++)for (int k = 0; k < b.w; k++) {
c.dat[i][k] += dat[i][j] * b.dat[j][k];
}
return c;
}
void operator%=(int& b) {
for (int i = 0; i < h; i++)for (int j = 0; j < w; j++)
dat[i][j] %= b;
}
Matrix operator%(int& b) {
Matrix c = *this; c %= b;
return c;
}
void operator*=(int& b) {
for (int i = 0; i < h; i++)for (int j = 0; j < w; j++)
dat[i][j] *= b;
}
Matrix operator*(int& b) {
Matrix c = *this; c *= b;
return c;
}
static Matrix moddot(Matrix& a, Matrix& b, int Mod = mod) {
Matrix c; c.init(a.h, b.w);
for (int i = 0; i < a.h; i++)for (int j = 0; j < a.w; j++)for (int k = 0; k < b.w; k++) {
(c.dat[i][k] += a.dat[i][j] * b.dat[j][k]) %= Mod;
(c.dat[i][k] += Mod) %= Mod;
}
return c;
}
Matrix mod_pow(int k, int Mod = mod) {
Matrix c, d = *this;
c.init(h, w);
for (int i = 0; i < h; i++) c[i][i] = 1;
while (k) {
if (k & 1) {
c = moddot(c, d);
c %= Mod;
}
d = moddot(d, d);
d %= Mod;
k >>= 1;
}
return c;
}
};
Matrix u, v;
signed main() {
int n, a, b, c;
cin >> n >> a >> b >> c;
u.init(1, 3);
v.init(3, 3);
u[0][0] = a; u[0][1] = b; u[0][2] = c;
v[0][0] = 1, v[1][0] = -1, v[1][1] = 1, v[2][1] = -1, v[2][2] = 1, v[0][2] = -1;
v = v.mod_pow(n - 1, mod);
u = Matrix::moddot(u, v, mod);
cout << u[0][0] << " " << u[0][1] << " " << u[0][2] << endl;
}