結果
| 問題 |
No.1105 Many Triplets
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2020-07-03 22:08:20 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1 ms / 2,000 ms |
| コード長 | 10,406 bytes |
| コンパイル時間 | 18,553 ms |
| コンパイル使用メモリ | 399,184 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-17 02:17:54 |
| 合計ジャッジ時間 | 14,235 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
// ---------- begin Matrix ----------
#[allow(dead_code)]
mod matrix {
use std::ops::{Add, Mul};
pub trait SemiRing: Add<Output = Self> + Mul<Output = Self> + Copy {
fn zero() -> Self;
fn one() -> Self;
}
pub const SIZE: usize = 3;
#[derive(Clone)]
pub struct SquareMatrix<T: SemiRing> {
buf: [[T; SIZE]; SIZE],
}
impl<T: SemiRing> SquareMatrix<T> {
pub fn zero() -> Self {
let z = T::zero();
SquareMatrix {
buf: [[z; SIZE]; SIZE],
}
}
pub fn identity() -> Self {
let mut m = Self::zero();
for i in 0..SIZE {
m.buf[i][i] = T::one();
}
m
}
pub fn set_at(&mut self, i: usize, j: usize, v: T) {
self.buf[i][j] = v;
}
pub fn get_at(&self, i: usize, j: usize) -> T {
self.buf[i][j]
}
pub fn matmul(&self, rhs: &Self) -> Self {
let mut res = Self::zero();
for (x, a) in res.buf.iter_mut().zip(self.buf.iter()) {
for (a, b) in a.iter().zip(rhs.buf.iter()) {
for (x, b) in x.iter_mut().zip(b.iter()) {
*x = *x + *a * *b;
}
}
}
res
}
pub fn matadd(&self, rhs: &Self) -> Self {
let mut c = Self::zero();
for (c, (a, b)) in c.buf.iter_mut().zip(self.buf.iter().zip(rhs.buf.iter())) {
for (c, (a, b)) in c.iter_mut().zip(a.iter().zip(b.iter())) {
*c = *a + *b;
}
}
c
}
pub fn matpow(&self, mut n: usize) -> Self {
let mut t = Self::identity();
let mut s = self.clone();
while n > 0 {
if n & 1 == 1 {
t = t.matmul(&s);
}
s = s.matmul(&s);
n >>= 1;
}
t
}
}
}
// ---------- end Matrix ----------
// ---------- begin ModInt ----------
mod modint {
#[allow(dead_code)]
pub struct Mod;
impl ConstantModulo for Mod {
const MOD: u32 = 1_000_000_007;
}
#[allow(dead_code)]
pub struct RuntimeMod;
static mut RUNTIME_MOD: u32 = 0;
impl Modulo for RuntimeMod {
fn modulo() -> u32 {
unsafe { RUNTIME_MOD }
}
}
#[allow(dead_code)]
impl RuntimeMod {
pub fn set_modulo(p: u32) {
unsafe {
RUNTIME_MOD = p;
}
}
}
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub trait ConstantModulo {
const MOD: u32;
}
impl<T> Modulo for T
where
T: ConstantModulo,
{
fn modulo() -> u32 {
T::MOD
}
}
pub struct ModularInteger<T>(pub u32, PhantomData<T>);
impl<T> Clone for ModularInteger<T> {
fn clone(&self) -> Self {
ModularInteger::new_unchecked(self.0)
}
}
impl<T> Copy for ModularInteger<T> {}
impl<T: Modulo> Add for ModularInteger<T> {
type Output = ModularInteger<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut d = self.0 + rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModularInteger::new_unchecked(d)
}
}
impl<T: Modulo> AddAssign for ModularInteger<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModularInteger<T> {
type Output = ModularInteger<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut d = T::modulo() + self.0 - rhs.0;
if d >= T::modulo() {
d -= T::modulo();
}
ModularInteger::new_unchecked(d)
}
}
impl<T: Modulo> SubAssign for ModularInteger<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModularInteger<T> {
type Output = ModularInteger<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
ModularInteger::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModularInteger<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModularInteger<T> {
type Output = ModularInteger<T>;
fn neg(self) -> Self::Output {
if self.0 == 0 {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModularInteger<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T: Modulo> std::str::FromStr for ModularInteger<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModularInteger::new(val))
}
}
impl<T: Modulo> From<usize> for ModularInteger<T> {
fn from(val: usize) -> ModularInteger<T> {
ModularInteger::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<i64> for ModularInteger<T> {
fn from(val: i64) -> ModularInteger<T> {
let m = T::modulo() as i64;
ModularInteger::new((val % m + m) as u32)
}
}
impl<T> ModularInteger<T> {
pub fn new_unchecked(d: u32) -> Self {
ModularInteger(d, PhantomData)
}
pub fn zero() -> Self {
ModularInteger::new_unchecked(0)
}
pub fn one() -> Self {
ModularInteger::new_unchecked(1)
}
}
#[allow(dead_code)]
impl<T: Modulo> ModularInteger<T> {
pub fn new(d: u32) -> Self {
ModularInteger::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u32) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(T::modulo() - 2)
}
}
// ---------- begin Precalc ----------
#[allow(dead_code)]
pub struct Precalc<T> {
inv: Vec<ModularInteger<T>>,
fact: Vec<ModularInteger<T>>,
ifact: Vec<ModularInteger<T>>,
}
#[allow(dead_code)]
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModularInteger::one(); n + 1];
let mut fact = vec![ModularInteger::one(); n + 1];
let mut ifact = vec![ModularInteger::one(); n + 1];
for i in 2..(n + 1) {
fact[i] = fact[i - 1] * ModularInteger::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModularInteger::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc {
inv: inv,
fact: fact,
ifact: ifact,
}
}
pub fn inv(&self, n: usize) -> ModularInteger<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModularInteger<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModularInteger<T> {
self.ifact[n]
}
pub fn comb(&self, n: usize, k: usize) -> ModularInteger<T> {
if k > n {
return ModularInteger::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end Precalc ----------
}
//https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 より
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
//
use modint::*;
use matrix::*;
type ModInt = ModularInteger<Mod>;
impl SemiRing for ModInt {
fn zero() -> Self {
ModInt::zero()
}
fn one() -> Self {
ModInt::one()
}
}
fn run() {
input! {
n: usize,
a: [ModInt; 3],
}
type Matrix = SquareMatrix<ModInt>;
let mut mat = Matrix::identity();
mat.set_at(0, 1, -ModInt::one());
mat.set_at(1, 2, -ModInt::one());
mat.set_at(2, 0, -ModInt::one());
let p = mat.matpow(n - 1);
let mut s = String::new();
for i in 0..3 {
let mut ans = ModInt::zero();
for j in 0..3 {
ans += a[j] * p.get_at(i, j);
}
s.push_str(&format!("{} ", ans));
}
s.pop();
println!("{}", s);
}
fn main() {
run();
}
akakimidori