結果
| 問題 | No.1103 Directed Length Sum |
| コンテスト | |
| ユーザー |
nok0
|
| 提出日時 | 2020-07-03 22:36:27 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 564 ms / 3,000 ms |
| コード長 | 3,847 bytes |
| 記録 | |
| コンパイル時間 | 1,892 ms |
| コンパイル使用メモリ | 174,864 KB |
| 実行使用メモリ | 132,336 KB |
| 最終ジャッジ日時 | 2024-09-17 04:18:14 |
| 合計ジャッジ時間 | 7,915 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 22 |
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:142:8: warning: 'root' may be used uninitialized [-Wmaybe-uninitialized]
142 | dfs(root);
| ~~~^~~~~~
main.cpp:137:9: note: 'root' was declared here
137 | int root;
| ^~~~
ソースコード
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define FOR(i,l,r) for(ll i=(l);i<(r);++i)
#define REP(i,n) FOR(i,0,n)
#define REPS(i,n) FOR(i,1,n+1)
#define RFOR(i,l,r) for(ll i=(l);i>=(r);--i)
#define RREP(i,n) RFOR(i,n-1,0)
#define RREPS(i,n) RFOR(i,n,1)
#define pb push_back
#define eb emplace_back
#define SZ(x) ((ll)(x).size())
#define all(x) (x).begin(),(x).end()
#define rall(x) (x).rbegin(),(x).rend()
template<class T = ll> using V = vector<T>;
template<class T = ll> using VV = V<V<T>>;
template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b; return true; }return false; }
template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b; return true; }return false; }
inline void Yes(bool b = true) {cout << (b ? "Yes" : "No") << '\n';}
inline void YES(bool b = true) {cout << (b ? "YES" : "NO") << '\n';}
inline void err(bool b = true) {if(b) {cout << -1 << '\n'; exit(0);}}
template<class T> inline void fin(bool b = true, T e = 0) {if(b) {cout << e << '\n'; exit(0);}}
template<class T> T Roundup_div(T x, T y) {return (x+(y-1))/y;}
const ll INF = 1e18;
const int NAX = 1e6;
//Modulo Calculation
const int MOD = 1e9 + 7;
// const int MOD = 998244353;
//ModInt
template <typename T>
T pow(T a, long long n, T e = 1) {
T ret = e;
while (n) {
if (n & 1) ret *= a;
a *= a;
n >>= 1;
}
return ret;
}
template <int mod>
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(ll x_) {
if ((x = x_ % mod + mod) >= mod) x -= mod;
}
ModInt& operator+=(ModInt rhs) {
if ((x += rhs.x) >= mod) x -= mod;
return *this;
}
ModInt& operator-=(ModInt rhs) {
if ((x -= rhs.x) < 0) x += mod;
return *this;
}
ModInt& operator*=(ModInt rhs) {
x = (unsigned long long)x * rhs.x % mod;
return *this;
}
ModInt& operator/=(ModInt rhs) {
x = (unsigned long long)x * rhs.inv().x % mod;
return *this;
}
ModInt operator-() const { return -x < 0 ? mod - x : -x; }
ModInt operator+(ModInt rhs) const { return ModInt(*this) += rhs; }
ModInt operator-(ModInt rhs) const { return ModInt(*this) -= rhs; }
ModInt operator*(ModInt rhs) const { return ModInt(*this) *= rhs; }
ModInt operator/(ModInt rhs) const { return ModInt(*this) /= rhs; }
bool operator==(ModInt rhs) const { return x == rhs.x; }
bool operator!=(ModInt rhs) const { return x != rhs.x; }
ModInt inv() const { return pow(*this, mod - 2); }
friend ostream& operator<<(ostream& s, ModInt<mod> a) {
s << a.x;
return s;
}
friend istream& operator>>(istream& s, ModInt<mod>& a) {
s >> a.x;
return s;
}
};
using mint = ModInt<MOD>;
//二項定理計算
const int MAX = 1000010;
mint fac[MAX],finv[MAX],inv[MAX];
//テーブル作成
void COMinit(){
fac[0]=fac[1]=1;
finv[0]=finv[1]=1;
inv[1]=1;
for(int i=2;i<MAX;i++){
fac[i]=fac[i-1]*(mint)i;
inv[i]=(mint)MOD-inv[MOD%i]*(mint)(MOD/i);
finv[i]=finv[i-1]*inv[i];
}
}
//nCkを求める
mint COM(int n,int k){
if(n < k or n < 0 or k < 0)return 0;
return fac[n]*finv[k]*finv[n-k];
}
//nPkを求める
mint PER(int n, int k){
if(n < k or n < 0 or k < 0) return 0;
return fac[n] / fac[n-k];
}
VV<> G(NAX);
mint ans;
int dfs(int r, int depth = 0){
int res = 0;
for(auto v:G[r]){
res += 1 + dfs(v, depth + 1);
}
ans += (mint)res * (mint)(depth + 1);
return res;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n; cin >> n;
V<bool> c(n,true);
REP(i,n-1){
int a, b; cin >> a >> b; a--; b--;
G[a].pb(b);
c[b] = false;
}
int root;
REP(i,n) if(c[i]){
root = i;
break;
}
dfs(root);
cout << ans << endl;
}
nok0