結果

問題 No.1105 Many Triplets
ユーザー Ogtsn99Ogtsn99
提出日時 2020-07-03 23:16:56
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 9,434 bytes
コンパイル時間 2,570 ms
コンパイル使用メモリ 211,260 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-17 04:54:46
合計ジャッジ時間 3,330 ms
ジャッジサーバーID
(参考情報)
judge2 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 1 ms
6,940 KB
testcase_12 AC 1 ms
6,940 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,940 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 1 ms
6,944 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 2 ms
6,944 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 2 ms
6,944 KB
testcase_22 AC 1 ms
6,940 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,944 KB
testcase_25 AC 2 ms
6,944 KB
testcase_26 AC 2 ms
6,944 KB
testcase_27 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)
#define rrep(i,n) for(int (i)=((n)-1);(i)>=0;(i)--)
#define itn int
#define miele(v) min_element(v.begin(), v.end())
#define maele(v) max_element(v.begin(), v.end())
#define SUM(v) accumulate(v.begin(), v.end(), 0LL)
#define lb(a, key) lower_bound(a.begin(),a.end(),key)
#define ub(a, key) upper_bound(a.begin(),a.end(),key)
#define COUNT(a, key) count(a.begin(), a.end(), key) 
#define BITCOUNT(x) __builtin_popcount(x)
#define pb push_back
#define all(x) (x).begin(),(x).end()
#define F first
#define S second
using P = pair <int,int>;
using WeightedGraph = vector<vector <P>>;
using UnWeightedGraph = vector<vector<int>>;
using Real = long double;
using Point = complex<Real>; //Point and Vector2d is the same!
using Vector2d = complex<Real>;
const long long INF = 1LL << 60;
const int MOD = 1000000007;
const double EPS = 1e-15;
const double PI=3.14159265358979323846;
template <typename T> 
int getIndexOfLowerBound(vector <T> &v, T x){
    return lower_bound(v.begin(),v.end(),x)-v.begin();
}
template <typename T> 
int getIndexOfUpperBound(vector <T> &v, T x){
    return upper_bound(v.begin(),v.end(),x)-v.begin();
}
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }
#define DUMPOUT cerr
#define repi(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
istream &operator>>(istream &is, Point &p) {
    Real a, b; is >> a >> b; p = Point(a, b); return is;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T,U> &p_var) {
    is >> p_var.first >> p_var.second;
    return is;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &vec) {
    for (T &x : vec) is >> x;
    return is;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, pair<T, U> &pair_var) {
    DUMPOUT<<'{';
    os << pair_var.first;
    DUMPOUT<<',';
    os << " "<< pair_var.second;
    DUMPOUT<<'}';
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, vector<T> &vec) {
    DUMPOUT<<'[';
    for (int i = 0; i < vec.size(); i++) 
    os << vec[i] << (i + 1 == vec.size() ? "" : " ");
    DUMPOUT<<']';
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, vector<vector<T>> &df) {
  for (auto& vec : df) os<<vec;
  return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, map<T, U> &map_var) {
    DUMPOUT << "{";
    repi(itr, map_var) {
        os << *itr;
        itr++;
        if (itr != map_var.end()) DUMPOUT << ", ";
        itr--;
    }
    DUMPOUT << "}";
    return os;
}
template <typename T>
ostream &operator<<(ostream &os, set<T> &set_var) {
    DUMPOUT << "{";
    repi(itr, set_var) {
        os << *itr;
        itr++;
        if (itr != set_var.end()) DUMPOUT << ", ";
        itr--;
    }
    DUMPOUT << "}";
    return os;
}
void print() {cout << endl;}
template <class Head, class... Tail>
void print(Head&& head, Tail&&... tail) {
  cout << head;
  if (sizeof...(tail) != 0) cout << " ";
  print(forward<Tail>(tail)...);
}
void dump_func() {DUMPOUT << '#'<<endl;}
template <typename Head, typename... Tail>
void dump_func(Head &&head, Tail &&... tail) {
    DUMPOUT << head;
    if (sizeof...(Tail) > 0) DUMPOUT << ", ";
    dump_func(std::move(tail)...);
}
#ifdef DEBUG_
#define DEB
#define dump(...)                                                              \
    DUMPOUT << "  " << string(#__VA_ARGS__) << ": "                            \
            << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]"        \
            << endl                                                            \
            << "    ",                                                         \
        dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif

template<int MOD> struct Fp {
    long long val;
    constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
        if (val < 0) val += MOD;
    }
    constexpr int getmod() { return MOD; }
    constexpr Fp operator - () const noexcept {
        return val ? MOD - val : 0;
    }
    constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
    constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
    constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
    constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
    constexpr Fp& operator += (const Fp& r) noexcept {
        val += r.val;
        if (val >= MOD) val -= MOD;
        return *this;
    }
    constexpr Fp& operator -= (const Fp& r) noexcept {
        val -= r.val;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr Fp& operator *= (const Fp& r) noexcept {
        val = val * r.val % MOD;
        return *this;
    }
    constexpr Fp& operator /= (const Fp& r) noexcept {
        long long a = r.val, b = MOD, u = 1, v = 0;
        while (b) {
            long long t = a / b;
            a -= t * b; swap(a, b);
            u -= t * v; swap(u, v);
        }
        val = val * u % MOD;
        if (val < 0) val += MOD;
        return *this;
    }
    constexpr bool operator == (const Fp& r) const noexcept {
        return this->val == r.val;
    }
    constexpr bool operator != (const Fp& r) const noexcept {
        return this->val != r.val;
    }
    friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {
        return os << x.val;
    }
    friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {
        if (n == 0) return 1;
        auto t = modpow(a, n / 2);
        t = t * t;
        if (n & 1) t = t * a;
        return t;
    }
};
using mint = Fp<1000000007>;

template< class T >
struct Matrix {
  vector< vector< T > > A;

  Matrix() {}

  Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}

  Matrix(size_t n) : A(n, vector< T >(n, 0)) {};

  size_t height() const {
    return (A.size());
  }

  size_t width() const {
    return (A[0].size());
  }

  inline const vector< T > &operator[](int k) const {
    return (A.at(k));
  }

  inline vector< T > &operator[](int k) {
    return (A.at(k));
  }

  static Matrix I(size_t n) {
    Matrix mat(n);
    for(int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    size_t n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector< vector< T > > C(n, vector< T >(m, 0));
    for(int i = 0; i < n; i++)
      for(int j = 0; j < m; j++)
        for(int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while(k > 0) {
      if(k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const {
    return (Matrix(*this) += B);
  }

  Matrix operator-(const Matrix &B) const {
    return (Matrix(*this) -= B);
  }

  Matrix operator*(const Matrix &B) const {
    return (Matrix(*this) *= B);
  }

  Matrix operator^(const long long k) const {
    return (Matrix(*this) ^= k);
  }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    size_t n = p.height(), m = p.width();
    for(int i = 0; i < n; i++) {
      os << "[";
      for(int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }


  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for(int i = 0; i < width(); i++) {
      int idx = -1;
      for(int j = i; j < width(); j++) {
        if(B[j][i] != 0) idx = j;
      }
      if(idx == -1) return (0);
      if(i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for(int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for(int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for(int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

Matrix <mint> mpow(Matrix<mint> x, int n) {
  Matrix <mint> ret(3, 3);
  ret[0][0] = ret[1][1] = ret[2][2] = 1;
  while(n > 0) {
    if(n & 1) (ret *= x) ;
    (x *= x) ;
    n >>= 1;
  }
  return ret;
}
signed main(void) { cin.tie(0); ios::sync_with_stdio(false);
    int n; cin>>n;
    int a, b, c; cin>>a>>b>>c;

    Matrix <mint> A(3,3);
    A[0][0] = a, A[1][1] = b, A[2][2] = c;
    Matrix <mint> B(3,3);
    B[0][0] = 1, B[0][1] = -1, B[1][1] = 1, B[1][2] = -1, B[2][0] = -1, B[2][2] = 1;
    
    Matrix Z = mpow(B, n-1);
   
    auto ANS = A*Z;
  
    print(Z[0][0]*a+Z[0][1]*b+Z[0][2]*c, Z[1][0]*a+Z[1][1]*b+Z[1][2]*c, Z[2][0]*a+Z[2][1]*b+Z[2][2]*c);
}
0