結果
問題 | No.1105 Many Triplets |
ユーザー | batsumaru |
提出日時 | 2020-07-03 23:22:25 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 5,923 bytes |
コンパイル時間 | 2,080 ms |
コンパイル使用メモリ | 176,756 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-17 04:59:12 |
合計ジャッジ時間 | 2,720 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 1 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef pair<ll, ll> P; #define DUMP(x) cout << #x << " = " << (x) << endl; #define FOR(i, m, n) for (ll i = m; i < n; i++) #define IFOR(i, m, n) for (ll i = n - 1; i >= m; i--) #define REP(i, n) FOR(i, 0, n) #define IREP(i, n) IFOR(i, 0, n) #define FOREACH(x, a) for (auto&(x) : (a)) #define ALL(v) (v).begin(), (v).end() #define SZ(x) ll(x.size()) // modint template <int MOD> struct Fp { long long val; constexpr Fp(long long v = 0) noexcept : val(v % MOD) { if (val < 0) val += MOD; } constexpr int getmod() { return MOD; } constexpr Fp operator-() const noexcept { return val ? MOD - val : 0; } constexpr Fp operator+(const Fp& r) const noexcept { return Fp(*this) += r; } constexpr Fp operator-(const Fp& r) const noexcept { return Fp(*this) -= r; } constexpr Fp operator*(const Fp& r) const noexcept { return Fp(*this) *= r; } constexpr Fp operator/(const Fp& r) const noexcept { return Fp(*this) /= r; } constexpr Fp& operator+=(const Fp& r) noexcept { val += r.val; if (val >= MOD) val -= MOD; return *this; } constexpr Fp& operator-=(const Fp& r) noexcept { val -= r.val; if (val < 0) val += MOD; return *this; } constexpr Fp& operator*=(const Fp& r) noexcept { val = val * r.val % MOD; return *this; } constexpr Fp& operator/=(const Fp& r) noexcept { long long a = r.val, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } val = val * u % MOD; if (val < 0) val += MOD; return *this; } constexpr bool operator==(const Fp& r) const noexcept { return this->val == r.val; } constexpr bool operator!=(const Fp& r) const noexcept { return this->val != r.val; } friend constexpr ostream& operator<<(ostream& os, const Fp<MOD>& x) noexcept { return os << x.val; } friend constexpr Fp<MOD> modpow(const Fp<MOD>& a, long long n) noexcept { if (n == 0) return 1; auto t = modpow(a, n / 2); t = t * t; if (n & 1) t = t * a; return t; } }; // binomial coefficient template <class T> struct BiCoef { vector<T> fact_, inv_, finv_; constexpr BiCoef() {} constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { init(n); } constexpr void init(int n) noexcept { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); int MOD = fact_[0].getmod(); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } constexpr T com(int n, int k) const noexcept { if (n < k || n < 0 || k < 0) return 0; if (n <= (int)fact_.size() - 1) { return fact_[n] * finv_[k] * finv_[n - k]; } // C(n,k), n <= 1e9, k <= 1e6 T res = 1; for (int i = n; i >= n - k + 1; i--) { T a = i; res *= a; } res *= finv_[k]; return res; } constexpr T fact(int n) const noexcept { if (n < 0) return 0; return fact_[n]; } constexpr T inv(int n) const noexcept { if (n < 0) return 0; return inv_[n]; } constexpr T finv(int n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; const int MOD = 1000000007; // const int MOD = 998244353; using mint = Fp<MOD>; BiCoef<mint> bc; // matrix template <class T> struct Matrix { vector<vector<T>> val; Matrix(int n = 1, int m = 1, T v = 0) : val(n, vector<T>(m, v)) {} void init(int n, int m, T v = 0) { val.assign(n, vector<T>(m, v)); } void resize(int n, int m) { val.resize(n); for (int i = 0; i < n; ++i) val[i].resize(m); } Matrix<T>& operator=(const Matrix<T>& A) { val = A.val; return *this; } size_t size() const { return val.size(); } vector<T>& operator[](int i) { return val[i]; } const vector<T>& operator[](int i) const { return val[i]; } // debug friend ostream& operator<<(ostream& s, const Matrix<T>& M) { for (int i = 0; i < (int)M.size(); ++i) for (int j = 0; j < (int)M[i].size(); ++j) s << M[i][j] << " \n"[i != (int)M.size() - 1 && j == (int)M[i].size() - 1]; return s; } }; template <class T> Matrix<T> operator*(const Matrix<T>& A, const Matrix<T>& B) { Matrix<T> R(A.size(), B[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < B[0].size(); ++j) for (int k = 0; k < B.size(); ++k) R[i][j] += A[i][k] * B[k][j]; return R; } template <class T> Matrix<T> pow(const Matrix<T>& A, long long n) { Matrix<T> R(A.size(), A.size()); auto B = A; for (int i = 0; i < A.size(); ++i) R[i][i] = 1; while (n > 0) { if (n & 1) R = R * B; B = B * B; n >>= 1; } return R; } template <class T> vector<T> operator*(const Matrix<T>& A, const vector<T>& B) { vector<T> v(A.size()); for (int i = 0; i < A.size(); ++i) for (int k = 0; k < B.size(); ++k) v[i] += A[i][k] * B[k]; return v; } template <class T> Matrix<T> operator+(const Matrix<T>& A, const Matrix<T>& B) { Matrix<T> R(A.size(), A[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < A[0].size(); ++j) R[i][j] = A[i][j] + B[i][j]; return R; } template <class T> Matrix<T> operator-(const Matrix<T>& A, const Matrix<T>& B) { Matrix<T> R(A.size(), A[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < A[0].size(); ++j) R[i][j] = A[i][j] - B[i][j]; return R; } template <class T> void printArray(const vector<T>& a) { int n = a.size(); for (int i = 0; i < n; i++) { cout << a[i] << " \n"[i == n - 1]; } } int main() { ll n; cin >> n; vector<mint> v(3); REP(i, 3) { ll a; cin >> a; v[i] = (mint)a; } Matrix<mint> X(3, 3, 0); X[0][0] = 1, X[0][1] = -1, X[1][1] = 1, X[1][2] = -1, X[2][0] = -1, X[2][2] = 1; Matrix<mint> Y = pow(X, n - 1); vector<mint> z = Y * v; printArray(z); }