結果
問題 |
No.1105 Many Triplets
|
ユーザー |
![]() |
提出日時 | 2020-07-04 22:52:32 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 32 ms / 2,000 ms |
コード長 | 2,334 bytes |
コンパイル時間 | 626 ms |
コンパイル使用メモリ | 12,672 KB |
実行使用メモリ | 11,008 KB |
最終ジャッジ日時 | 2024-09-19 14:45:52 |
合計ジャッジ時間 | 2,038 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 25 |
ソースコード
class SquareMatrix(): def __init__(self, n, mod=1000000007): self.n = n self.mat = [[0 for j in range(n)] for i in range(n)] self.mod = mod @staticmethod def id(n): res = SquareMatrix(n) for i in range(n): res.mat[i][i] = 1 return res def operate(self, vec): assert len(vec) == self.n res = [0 for _ in range(self.n)] for i in range(self.n): for j in range(self.n): res[i] += self.mat[i][j] * vec[j] res[i] %= self.mod return res def add(self, other): assert other.n == self.n res = SquareMatrix(self.n) for i in range(self.n): for j in range(self.n): res.mat[i][j] = self.mat[i][j] + other.mat[i][j] res.mat[i][j] %= self.mod return res def subtract(self, other): assert other.n == self.n res = SquareMatrix(self.n) for i in range(self.n): for j in range(self.n): res.mat[i][j] = self.mat[i][j] - other.mat[i][j] res.mat[i][j] %= self.mod return res def times(self, k): res = SquareMatrix(self.n) for i in range(self.n): for j in range(self.n): res.mat[i][j] = self.mat[i][j] * k res.mat[i][j] %= self.mod return res def multiply(self, other): #O(n^3) assert self.n == other.n res = SquareMatrix(self.n) for i in range(self.n): for j in range(self.n): for k in range(self.n): res.mat[i][j] += self.mat[i][k] * other.mat[k][j] res.mat[i][j] %= self.mod return res def power(self, k): tmp = SquareMatrix(self.n) for i in range(self.n): for j in range(self.n): tmp.mat[i][j] = self.mat[i][j] res = SquareMatrix.id(self.n) while k: if k & 1: res = res.multiply(tmp) tmp = tmp.multiply(tmp) k >>= 1 return res N = int(input()) A = list(map(int, input().split())) M = SquareMatrix(3) for i in range(3): M.mat[i][i] = 1 M.mat[i][i - 1] = 0 M.mat[i][i - 2] = -1 res = M.power(N - 1).operate(A) print(*res)