結果
| 問題 |
No.888 約数の総和
|
| コンテスト | |
| ユーザー |
KoD
|
| 提出日時 | 2020-07-05 10:23:06 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 5,821 bytes |
| コンパイル時間 | 1,206 ms |
| コンパイル使用メモリ | 92,896 KB |
| 最終ジャッジ日時 | 2025-01-11 15:54:24 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 30 |
ソースコード
#line 1 "main.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/888"
#line 2 "/Users/kodamankod/Desktop/Programming/Library/algebraic/number_theory.cpp"
#line 2 "/Users/kodamankod/Desktop/Programming/Library/other/fix_point.cpp"
#include <utility>
template <class Func>
struct fix_point: private Func {
explicit constexpr fix_point(Func &&func): Func(std::forward<Func>(func)) { }
template <class... Args>
constexpr decltype(auto) operator () (Args &&... args) const {
return Func::operator()(*this, std::forward<Args>(args)...);
}
};
template <class Func>
constexpr decltype(auto) make_fix_point(Func &&func) {
return fix_point<Func>(std::forward<Func>(func));
}
#line 4 "/Users/kodamankod/Desktop/Programming/Library/algebraic/number_theory.cpp"
#include <cstddef>
#include <cstdint>
#line 7 "/Users/kodamankod/Desktop/Programming/Library/algebraic/number_theory.cpp"
#include <vector>
#include <algorithm>
namespace number_theory_detail {
using u32 = uint32_t;
using u64 = uint64_t;
using u128 = __uint128_t;
class m64 {
public:
static inline u64 mod;
static void set_mod(u64 x) {
mod = x;
encode = -u128(mod) % mod;
decode = [] {
u64 res = 0, cur = 0;
for (size_t i = 0; i < 64; ++i) {
if (!(cur & 1)) { res += u64(1) << i; cur += mod; }
cur >>= 1;
}
return res;
}();
}
private:
static inline u64 encode;
static inline u64 decode;
static u64 reduce(u128 x) {
u64 res = u64((u128(u64(x) * decode) * mod + x) >> 64);
return res >= mod ? res - mod : res;
}
u64 value;
public:
m64(): value(0) { }
explicit m64(u64 x): value(reduce((u128) x * encode)) { }
u64 get() const {
u64 res = reduce(value);
return res >= mod ? res - mod : res;
}
m64 power(u64 exp) const {
m64 res(1), mult(*this);
while (exp > 0) {
if (exp & 1) res *= mult;
mult *= mult;
exp >>= 1;
}
return res;
}
m64 operator + (const m64 &rhs) const { return m64(*this) += rhs; }
m64& operator += (const m64 &rhs) {
if ((value += rhs.value) >= mod) value -= mod;
return *this;
}
m64 operator * (const m64 &rhs) const { return m64(*this) *= rhs; }
m64& operator *= (const m64 &rhs) {
value = reduce((u128) value * rhs.value);
return *this;
}
bool operator == (const m64 &rhs) const { return value == rhs.value; }
bool operator != (const m64 &rhs) const { return value != rhs.value; }
};
u64 gcd64(u64 a, u64 b) {
if (a == 0) return b;
if (b == 0) return a;
if (a < b) std::swap(a, b);
while (u64 r = a % b) a = b, b = r;
return b;
}
bool test_prime(u64 a, u64 s, u64 d, u64 n) {
m64::set_mod(n);
m64 cur = m64(a).power(d);
if (cur == m64(1)) return true;
m64 bad(n - 1);
for (size_t i = 0; i < s; ++i) {
if (cur == bad) return true;
cur *= cur;
}
return false;
}
template <class T>
bool miller_rabin(T n) {
if (n <= 1) return false;
if (n == 2) return true;
if (!(n & 1)) return false;
u64 d = n - 1, s = 0;
while (!(d & 1)) { d >>= 1; ++s; }
if (n < 4759123141) {
for (auto p: { 2, 7, 61 }) {
if (p >= n) break;
if (!test_prime(p, s, d, n)) return false;
}
}
else {
for (auto p: { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 }) {
if (p >= n) break;
if (!test_prime(p, s, d, n)) return false;
}
}
return true;
}
template <class T>
T pollard_rho(T n) {
if (!(n & 1)) return 2;
m64::set_mod(n);
m64 add(1);
auto transit = [&add](m64 m) { return m * m + add; };
auto dif_abs = [](u64 x, u64 y) { return x > y ? x - y : y - x; };
u64 initial = 0;
while (true) {
++initial;
m64 x(initial);
m64 y = transit(x);
while (true) {
u64 g = number_theory_detail::gcd64(dif_abs(x.get(), y.get()), n);
if (g == 1) {
x = transit(x);
y = transit(transit(y));
continue;
}
if (g == n) break;
return g;
}
}
}
};
template <class T>
bool is_prime(T x) {
return number_theory_detail::miller_rabin(x);
}
template <class T>
std::vector<T> enumerate_factors(T n, bool sort = true) {
if (n == 1) return { };
if (is_prime(n)) return { n };
T d = number_theory_detail::pollard_rho(n);
auto res = enumerate_factors(d);
auto add = enumerate_factors(n / d);
size_t size = res.size();
res.resize(size + add.size());
std::copy(add.cbegin(), add.cend(), res.begin() + size);
if (sort) std::inplace_merge(res.begin(), res.begin() + size, res.end());
return res;
}
template <class T>
std::vector<std::pair<T, size_t>> factorize(T n) {
std::vector<std::pair<T, size_t>> res;
T cur = 0;
for (auto p: enumerate_factors(n)) {
if (p != cur) {
cur = p;
res.emplace_back(p, 0);
}
++res.back().second;
}
return res;
}
template <class T>
std::vector<T> enumerate_divisors(T n, bool sort = true) {
auto factors = factorize(n);
std::vector<T> res;
size_t size = 1;
for (auto [p, e]: factors) {
size *= (e + 1);
}
res.reserve(size);
make_fix_point([&](auto dfs, size_t i, T x) -> void {
if (i == factors.size()) {
res.push_back(x);
return;
}
dfs(i + 1, x);
auto [p, e] = factors[i];
for (size_t j = 1; j <= e; ++j) {
x *= p;
dfs(i + 1, x);
}
})(0, 1);
if (sort) std::sort(res.begin(), res.end());
return res;
}
#line 5 "main.cpp"
#line 7 "main.cpp"
#include <iostream>
int main() {
uint64_t N;
std::cin >> N;
uint64_t ans = 0;
for (auto x: enumerate_divisors(N, false)) {
ans += x;
}
std::cout << ans << '\n';
return 0;
}
KoD