結果
問題 | No.891 隣接3項間の漸化式 |
ユーザー | toyuzuko |
提出日時 | 2020-07-05 16:48:05 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,731 bytes |
コンパイル時間 | 88 ms |
コンパイル使用メモリ | 13,184 KB |
実行使用メモリ | 18,468 KB |
最終ジャッジ日時 | 2024-09-22 14:20:13 |
合計ジャッジ時間 | 4,209 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 32 ms
18,468 KB |
testcase_01 | AC | 32 ms
11,392 KB |
testcase_02 | AC | 33 ms
11,392 KB |
testcase_03 | AC | 33 ms
11,392 KB |
testcase_04 | AC | 33 ms
11,392 KB |
testcase_05 | AC | 32 ms
11,520 KB |
testcase_06 | AC | 32 ms
11,520 KB |
testcase_07 | AC | 32 ms
11,392 KB |
testcase_08 | AC | 32 ms
11,520 KB |
testcase_09 | AC | 32 ms
11,520 KB |
testcase_10 | AC | 32 ms
11,520 KB |
testcase_11 | AC | 32 ms
11,520 KB |
testcase_12 | AC | 32 ms
11,392 KB |
testcase_13 | TLE | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
ソースコード
class SquareMatrix(): def __init__(self, n, mod=1000000007): self.n = n self.mat = [[0 for j in range(n)] for i in range(n)] self.mod = mod @staticmethod def id(n, mod=1000000007): res = SquareMatrix(n, mod) for i in range(n): res.mat[i][i] = 1 return res @staticmethod def modinv(n, mod): assert n % mod != 0 c0, c1 = n, mod a0, a1 = 1, 0 b0, b1 = 0, 1 while c1: a0, a1 = a1, a0 - c0 // c1 * a1 b0, b1 = b1, b0 - c0 // c1 * b1 c0, c1 = c1, c0 % c1 return a0 % mod def set(self, arr): for i in range(self.n): for j in range(self.n): self.mat[i][j] = arr[i][j] % self.mod def operate(self, vec): assert len(vec) == self.n res = [0 for _ in range(self.n)] for i in range(self.n): for j in range(self.n): res[i] += self.mat[i][j] * vec[j] res[i] %= self.mod return res def add(self, other): assert other.n == self.n res = SquareMatrix(self.n, self.mod) for i in range(self.n): for j in range(self.n): res.mat[i][j] = self.mat[i][j] + other.mat[i][j] res.mat[i][j] %= self.mod return res def subtract(self, other): assert other.n == self.n res = SquareMatrix(self.n, self.mod) for i in range(self.n): for j in range(self.n): res.mat[i][j] = self.mat[i][j] - other.mat[i][j] res.mat[i][j] %= self.mod return res def times(self, k): res = SquareMatrix(self.n, self.mod) for i in range(self.n): for j in range(self.n): res.mat[i][j] = self.mat[i][j] * k res.mat[i][j] %= self.mod return res def multiply(self, other): assert self.n == other.n res = SquareMatrix(self.n, self.mod) for i in range(self.n): for j in range(self.n): for k in range(self.n): res.mat[i][j] += self.mat[i][k] * other.mat[k][j] res.mat[i][j] %= self.mod return res def power(self, k): tmp = SquareMatrix(self.n, self.mod) for i in range(self.n): for j in range(self.n): tmp.mat[i][j] = self.mat[i][j] res = SquareMatrix.id(self.n, self.mod) while k: if k & 1: res = res.multiply(tmp) tmp = tmp.multiply(tmp) k >>= 1 return res def trace(self): res = 0 for i in range(self.n): res += self.mat[i][i] res %= self.mod return res def determinant(self): res = 1 tmp = SquareMatrix(self.n, self.mod) for i in range(self.n): for j in range(self.n): tmp.mat[i][j] = self.mat[i][j] for j in range(self.n): if tmp.mat[j][j] == 0: for i in range(j + 1, self.n): if tmp.mat[i][j] != 0: idx = i break else: return 0 for k in range(self.n): tmp.mat[j][k], tmp.mat[idx][k] = tmp.mat[idx][k], tmp.mat[j][k] res *= -1 inv = SquareMatrix.modinv(tmp.mat[j][j], self.mod) for i in range(j + 1, self.n): c = -inv * tmp.mat[i][j] % self.mod for k in range(self.n): tmp.mat[i][k] += c * tmp.mat[j][k] tmp.mat[i][k] %= self.mod for i in range(self.n): res *= tmp.mat[i][i] res %= self.mod return res def transpose(self): res = SquareMatrix(self.n, self.mod) for i in range(self.n): for j in range(self.n): res.mat[i][j] = self.mat[j][i] return res def inverse(self): #self.determinant() != 0 res = SquareMatrix.id(self.n, self.mod) tmp = SquareMatrix(self.n, self.mod) sgn = 1 for i in range(self.n): for j in range(self.n): tmp.mat[i][j] = self.mat[i][j] for j in range(self.n): if tmp.mat[j][j] == 0: for i in range(j + 1, self.n): if tmp.mat[i][j] != 0: idx = i break else: return 0 for k in range(self.n): tmp.mat[j][k], tmp.mat[idx][k] = tmp.mat[idx][k], tmp.mat[j][k] res.mat[j][k], res.mat[idx][k] = res.mat[idx][k], res.mat[j][k] inv = SquareMatrix.modinv(tmp.mat[j][j], self.mod) for k in range(self.n): tmp.mat[j][k] *= inv tmp.mat[j][k] %= self.mod res.mat[j][k] *= inv res.mat[j][k] %= self.mod for i in range(self.n): c = tmp.mat[i][j] for k in range(self.n): if i == j: continue tmp.mat[i][k] -= tmp.mat[j][k] * c tmp.mat[i][k] %= self.mod res.mat[i][k] -= res.mat[j][k] * c res.mat[i][k] %= self.mod return res def linear_equations(self, vec): #self.determinant != 0 return self.inverse().operate(vec) def print(self): print(*self.mat, sep='\n') A, B, N = map(int, input().split()) M = SquareMatrix(2) M.set([[A, B], [1, 0]]) P = M.power(N - 1) print(P.operate([1, 0])[0])