結果

問題 No.890 移調の限られた旋法
ユーザー haruki_Kharuki_K
提出日時 2020-07-09 02:25:45
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 85 ms / 2,000 ms
コード長 8,966 bytes
コンパイル時間 1,871 ms
コンパイル使用メモリ 178,432 KB
実行使用メモリ 48,444 KB
最終ジャッジ日時 2024-10-05 12:36:48
合計ジャッジ時間 5,485 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 69 ms
48,316 KB
testcase_01 AC 67 ms
48,312 KB
testcase_02 AC 71 ms
48,192 KB
testcase_03 AC 68 ms
48,312 KB
testcase_04 AC 67 ms
48,444 KB
testcase_05 AC 68 ms
48,320 KB
testcase_06 AC 71 ms
48,316 KB
testcase_07 AC 69 ms
48,316 KB
testcase_08 AC 73 ms
48,316 KB
testcase_09 AC 75 ms
48,240 KB
testcase_10 AC 73 ms
48,316 KB
testcase_11 AC 70 ms
48,316 KB
testcase_12 AC 69 ms
48,444 KB
testcase_13 AC 80 ms
48,356 KB
testcase_14 AC 82 ms
48,312 KB
testcase_15 AC 84 ms
48,320 KB
testcase_16 AC 85 ms
48,316 KB
testcase_17 AC 80 ms
48,444 KB
testcase_18 AC 80 ms
48,320 KB
testcase_19 AC 77 ms
48,312 KB
testcase_20 AC 76 ms
48,316 KB
testcase_21 AC 75 ms
48,312 KB
testcase_22 AC 76 ms
48,316 KB
testcase_23 AC 78 ms
48,312 KB
testcase_24 AC 80 ms
48,188 KB
testcase_25 AC 77 ms
48,312 KB
testcase_26 AC 81 ms
48,192 KB
testcase_27 AC 82 ms
48,312 KB
testcase_28 AC 78 ms
48,320 KB
testcase_29 AC 78 ms
48,316 KB
testcase_30 AC 79 ms
48,316 KB
testcase_31 AC 77 ms
48,192 KB
testcase_32 AC 76 ms
48,320 KB
testcase_33 AC 79 ms
48,444 KB
testcase_34 AC 81 ms
48,316 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// >>> TEMPLATES
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
#define int ll
#define double ld
#define rep(i,n) for (int i = 0; i < (int)(n); i++)
#define rep1(i,n) for (int i = 1; i <= (int)(n); i++)
#define repR(i,n) for (int i = (int)(n)-1; i >= 0; i--)
#define rep1R(i,n) for (int i = (int)(n); i >= 1; i--)
#define loop(i,a,B) for (int i = a; i B; i++)
#define loopR(i,a,B) for (int i = a; i B; i--)
#define all(x) (x).begin(), (x).end()
#define allR(x) (x).rbegin(), (x).rend()
#define pb push_back
#define eb emplace_back
#define mp make_pair
#define fst first
#define snd second
template <class Int> auto constexpr inf = numeric_limits<Int>::max()/2-1;
auto constexpr INF32 = inf<int32_t>;
auto constexpr INF64 = inf<int64_t>;
auto constexpr INF   = inf<int>;
#ifdef LOCAL
#include "debug.hpp"
#else
#define dump(...) (void)(0)
#define say(x) (void)(0)
#define debug if (0)
#endif
template <class T> using pque_max = priority_queue<T>;
template <class T> using pque_min = priority_queue<T, vector<T>, greater<T> >;
template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type>
ostream& operator<<(ostream& os, T const& v) { bool f = true; for (auto const& x : v) os << (f ? "" : " ") << x, f = false; return os; }
template <class T, class = typename T::iterator, class = typename enable_if<!is_same<T, string>::value>::type>
istream& operator>>(istream& is, T &v) { for (auto& x : v) is >> x; return is; }
template <class T, class S> ostream& operator<<(ostream& os, pair<T,S> const& p) { return os << "(" << p.first << ", " << p.second << ")"; }
template <class T, class S> istream& operator>>(istream& is, pair<T,S>& p) { return is >> p.first >> p.second; }
struct IOSetup { IOSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } iosetup;
template <class F> struct FixPoint : private F {
    constexpr FixPoint(F&& f) : F(forward<F>(f)) {}
    template <class... T> constexpr auto operator()(T&&... x) const { return F::operator()(*this, forward<T>(x)...); }
};
struct MakeFixPoint {
    template <class F> constexpr auto operator|(F&& f) const { return FixPoint<F>(forward<F>(f)); }
};
#define MFP MakeFixPoint()|
#define def(name, ...) auto name = MFP [&](auto &&name, __VA_ARGS__)
template <class T, size_t d> struct vec_impl {
    using type = vector<typename vec_impl<T,d-1>::type>;
    template <class... U> static type make_v(size_t n, U&&... x) { return type(n, vec_impl<T,d-1>::make_v(forward<U>(x)...)); }
};
template <class T> struct vec_impl<T,0> { using type = T; static type make_v(T const& x = {}) { return x; } };
template <class T, size_t d = 1> using vec = typename vec_impl<T,d>::type;
template <class T, size_t d = 1, class... Args> auto make_v(Args&&... args) { return vec_impl<T,d>::make_v(forward<Args>(args)...); }
template <class T> void quit(T const& x) { cout << x << endl; exit(0); }
template <class T, class U> constexpr bool chmin(T& x, U const& y) { if (x > y) { x = y; return true; } return false; }
template <class T, class U> constexpr bool chmax(T& x, U const& y) { if (x < y) { x = y; return true; } return false; }
template <class It> constexpr auto sumof(It b, It e) { return accumulate(b,e,typename iterator_traits<It>::value_type{}); }
template <class T> int sz(T const& x) { return x.size(); }
template <class C, class T> int lbd(C const& v, T const& x) {
    return lower_bound(v.begin(), v.end(), x)-v.begin();
}
template <class C, class T> int ubd(C const& v, T const& x) {
    return upper_bound(v.begin(), v.end(), x)-v.begin();
}
template <class C, class F> int ppt(C const& v, F f) {
    return partition_point(v.begin(), v.end(), f)-v.begin();
}
template <class Int> struct Random {
    mt19937_64 mt{random_device{}()};
    //mt19937_64 mt{(unsigned)time(0)};
    Int a,b; // [a,b]
    Random(Int a, Int b) : a(a), b(b) {}
    Int operator()() { return uniform_int_distribution<Int>(a,b)(mt); }
};
template <class Int> Int rand(Int a, Int b) { // [a,b]
    static mt19937_64 mt{random_device{}()};
    return uniform_int_distribution<Int>(a,b)(mt);
}
// <<<
// >>> modint
template <uint32_t md>
class modint {
    static_assert(md < (1u<<31), "");
    using M = modint;
    using i64 = int64_t;
    uint32_t x;
public:
    static constexpr uint32_t mod = md;
    constexpr modint(i64 x = 0) : x((x%=md) < 0 ? x+md : x) { }
    constexpr i64 val() const { return x; }
    constexpr explicit operator i64() const { return x; }
    constexpr bool operator==(M r) const { return x == r.x; }
    constexpr bool operator!=(M r) const { return x != r.x; }
    constexpr M operator+() const { return *this; }
    constexpr M operator-() const { return M()-*this; }
    constexpr M& operator+=(M r) { x += r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator-=(M r) { x += md-r.x; x = (x < md ? x : x-md); return *this; }
    constexpr M& operator*=(M r) { x = (uint64_t(x)*r.x)%md; return *this; }
    constexpr M& operator/=(M r) { return *this *= r.inv(); }
    constexpr M operator+(M r) const { return M(*this) += r; }
    constexpr M operator-(M r) const { return M(*this) -= r; }
    constexpr M operator*(M r) const { return M(*this) *= r; }
    constexpr M operator/(M r) const { return M(*this) /= r; }
    friend constexpr M operator+(i64 x, M y) { return M(x)+y; }
    friend constexpr M operator-(i64 x, M y) { return M(x)-y; }
    friend constexpr M operator*(i64 x, M y) { return M(x)*y; }
    friend constexpr M operator/(i64 x, M y) { return M(x)/y; }
    constexpr M inv() const { assert(x > 0); return pow(md-2); }
    constexpr M pow(i64 n) const {
        n %= md-1;
        if (n < 0) n = (-n)*(md-2)%(md-1);
        M v = *this, r = 1;
        for (; n > 0; n >>= 1, v *= v) if (n&1) r *= v;
        return r;
    }
#ifdef LOCAL
    friend string to_s(M r) { return to_s(r.val(), mod); }
#endif
    friend ostream& operator<<(ostream& os, M r) { return os << r.val(); }
    friend istream& operator>>(istream& is, M &r) { i64 x; is >> x; r = x; return is; }
};
// <<<
//constexpr int64_t MOD = 998244353;
constexpr int64_t MOD = 1e9+7;
using mint = modint<MOD>;

// >>> mod table
template <int32_t mod>
struct ModTable {
    static constexpr int32_t Size = 1e6 + 10;
    static_assert(Size <= mod, "");
    using ll = int64_t;
    int32_t fact[Size], finv[Size], inv[Size];
    ModTable() {
        fact[0] = fact[1] = finv[0] = finv[1] = inv[1] = 1;
        for (int i = 2; i < Size; i++) {
            fact[i] = ll(fact[i-1])*i % mod;
            inv[i] = mod - ll(inv[mod%i])*(mod/i) % mod;
            finv[i] = ll(finv[i-1])*inv[i] % mod;
        }
    }
};
const ModTable<MOD> mod_tab;

modint<MOD> fact(int n) {
    assert(0 <= n); assert(n < ModTable<MOD>::Size);
    return mod_tab.fact[n];
}
modint<MOD> finv(int n) {
    assert(0 <= n); assert(n < ModTable<MOD>::Size);
    return mod_tab.finv[n];
}
modint<MOD> C(int n, int k) {
    if (n < 0 || k < 0 || n < k) return 0;
    return fact(n)*finv(k)*finv(n-k);
}
modint<MOD> P(int n, int k) {
    assert(k >= 0);
    return fact(n)*finv(n-k);
}
modint<MOD> sgn(int n) { return n%2 == 0 ? +1 : -1; }
// <<<
// >>> sieve

namespace Sieve {
    constexpr int MAX = 2e6;
    vector<int> ps, pf, mu; // primes, min prime factor, moebius
    auto sieve_init = [](){
        pf.resize(MAX+1);
        iota(pf.begin(), pf.end(), 0);
        mu.resize(MAX+1,-1);
        mu[1] = 1;
        for (int i = 2; i <= MAX; ++i) {
            if (pf[i] == i) ps.push_back(i);
            for (int p : ps) {
                const int x = p*i;
                if (p > pf[i] || x > MAX) break;
                pf[x] = p;
                mu[x] = -mu[i];
                if (i%p == 0) mu[x] = 0;
            }
        }
        return 0;
    }();
    bool is_prime(int n) {
        assert(0 <= n); assert(n <= MAX);
        return pf[n] == n && n >= 2;
    }
    vector<pair<int,int> > prime_factor(int n) {
        assert(0 <= n); assert(n <= MAX);
        vector<pair<int,int> > ret;
        while (n > 1) {
            int p = pf[n], i = 0;
            while (pf[n] == p) ++i, n /= p;
            ret.emplace_back(p,i);
        }
        return ret;
    }
    vector<int> divisors(int n) {
        assert(0 <= n); assert(n <= MAX);
        vector<int> ret = {1};
        for (auto p : prime_factor(n)) {
            int m = ret.size();
            for (int i = 0; i < m; ++i) {
                for (int j = 0, v = 1;  j < p.second; ++j) {
                    v *= p.first;
                    ret.push_back(ret[i]*v);
                }
            }
        }
        return ret;
    }
}
using namespace Sieve;

// <<<

int32_t main() {
    int n,k; cin >> n >> k;

    mint ans = 0;
    rep1 (i,n) if (i > 1 && n%i == 0 && k%i == 0) {
        ans += (-mu[i])*C(n/i,k/i);
    }

    cout << ans << endl;
}
0