結果

問題 No.1125 Without Parallelogram
ユーザー ThistleThistle
提出日時 2020-07-10 14:53:45
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 7 ms / 1,000 ms
コード長 6,185 bytes
コンパイル時間 1,974 ms
コンパイル使用メモリ 126,564 KB
実行使用メモリ 8,576 KB
最終ジャッジ日時 2024-11-14 22:41:13
合計ジャッジ時間 5,861 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 6 ms
8,516 KB
testcase_01 AC 7 ms
8,448 KB
testcase_02 AC 6 ms
8,576 KB
testcase_03 AC 5 ms
8,448 KB
testcase_04 AC 7 ms
8,520 KB
testcase_05 AC 6 ms
8,448 KB
testcase_06 AC 6 ms
8,576 KB
testcase_07 AC 5 ms
8,448 KB
testcase_08 AC 6 ms
8,448 KB
testcase_09 AC 6 ms
8,448 KB
testcase_10 AC 5 ms
8,576 KB
testcase_11 AC 5 ms
8,576 KB
testcase_12 AC 7 ms
8,448 KB
testcase_13 AC 6 ms
8,472 KB
testcase_14 AC 5 ms
8,576 KB
testcase_15 AC 6 ms
8,448 KB
testcase_16 AC 6 ms
8,516 KB
testcase_17 AC 7 ms
8,576 KB
testcase_18 AC 6 ms
8,448 KB
testcase_19 AC 6 ms
8,576 KB
testcase_20 AC 7 ms
8,576 KB
testcase_21 AC 6 ms
8,472 KB
testcase_22 AC 7 ms
8,448 KB
testcase_23 AC 6 ms
8,448 KB
testcase_24 AC 7 ms
8,448 KB
testcase_25 AC 7 ms
8,448 KB
testcase_26 AC 6 ms
8,448 KB
testcase_27 AC 6 ms
8,448 KB
testcase_28 AC 7 ms
8,520 KB
testcase_29 AC 5 ms
8,576 KB
testcase_30 AC 6 ms
8,320 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target ("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#define _USE_MATH_DEFINES
#include<iostream>
#include<string>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<list>
#include<iomanip>
#include<vector>
#include<random>
#include<functional>
#include<algorithm>
#include<stack>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<unordered_map>
#include<climits>
#include<fstream>
#include<complex>
#include<time.h>
#include<cassert>
#include<functional>
#include<numeric>
#include<tuple>
using namespace std;
using ll = long long;
using ld = long double;
#define int long long
#define all(a) (a).begin(),(a).end()
#define fs first
#define sc second
#define xx first
#define yy second.first
#define zz second.second
#define H pair<int, int>
#define P pair<int, pair<int, int>>
#define Q(i,j,k) mkp(i,mkp(j,k))
#define rng(i,s,n) for(int i = (s) ; i < (n) ; i++)
#define rep(i,n) rng(i, 0, (n))
#define mkp make_pair
#define vec vector
#define vi vec<int>
#define pb emplace_back
#define siz(a) (int)(a).size()
#define crdcomp(b) sort(all((b)));(b).erase(unique(all((b))),(b).end())
#define getidx(b,i) lower_bound(all(b),(i))-(b).begin()
#define ssp(i,n) (i==(int)(n)-1?"\n":" ")
#define ctoi(c) (int)(c-'0')
#define itoc(c) (char)(c+'0')
#define cyes printf("Yes\n")
#define cno printf("No\n")
#define cdf(n) int quetimes_=(n);rep(qq123_,quetimes_)
#define gcj printf("Case #%lld: ",qq123_+1)
#define readv(a,n) a.resize(n,0);rep(i,(n)) a[i]=read()
#define found(a,x) (a.find(x)!=a.end())
//#define endl "\n"
constexpr int mod = 1e9 + 7;
constexpr int Mod = 998244353;
constexpr ld EPS = 1e-10;
constexpr ll inf = 3 * 1e18;
constexpr int Inf = 15 * 1e8;
constexpr int dx[] = { -1,1,0,0 }, dy[] = { 0,0,-1,1 };
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
ll read() { ll u, k = scanf("%lld", &u); return u; }
string reads() { string s; cin >> s; return s; }
H readh(bool g = 0) { H u; int k = scanf("%lld %lld", &u.fs, &u.sc); if (g) u.fs--, u.sc--; return u; }
bool ina(H t, int h, int w) { return 0 <= t.fs && t.fs < h && 0 <= t.sc && t.sc < w; }
bool ina(int t, int l, int r) { return l <= t && t < r; }
ll gcd(ll i, ll j) { return j ? gcd(j, i % j) : i; }
ll popcount(ll x) {
    int sum = 0; for (int i = 0; i < 60; i++)if ((1ll << i) & x) sum++;
    return sum;
}
class mint {
public:ll v;
      mint(ll v = 0) { s(v % mod + mod); }
      constexpr static int mod = 1e9 + 7;
      constexpr static int fn_ = 3e5 + 5;
      static mint fact[fn_], comp[fn_];
      mint pow(int x) const {
          mint b(v), c(1);
          while (x) {
              if (x & 1) c *= b;
              b *= b;
              x >>= 1;
          }
          return c;
      }
      inline mint& s(int vv) {
          v = vv < mod ? vv : vv - mod;
          return *this;
      }
      inline mint inv()const { return pow(mod - 2); }
      inline mint operator-()const { return mint() - *this; }
      inline mint& operator+=(const mint b) { return s(v + b.v); }
      inline mint& operator-=(const mint b) { return s(v + mod - b.v); }
      inline mint& operator*=(const mint b) { v = v * b.v % mod; return *this; }
      inline mint& operator/=(const mint b) { v = v * b.inv().v % mod; return *this; }
      inline mint operator+(const mint b) const { return mint(v) += b; }
      inline mint operator-(const mint b) const { return mint(v) -= b; }
      inline mint operator*(const mint b) const { return mint(v) *= b; }
      inline mint operator/(const mint b) const { return mint(v) /= b; }
      friend ostream& operator<<(ostream& os, const mint& m) {
          return os << m.v;
      }
      friend istream& operator>>(istream& is, mint& m) {
          int x; is >> x; m = mint(x);
          return is;
      }
      bool operator<(const mint& r)const { return v < r.v; }
      bool operator>(const mint& r)const { return v > r.v; }
      bool operator<=(const mint& r)const { return v <= r.v; }
      bool operator>=(const mint& r)const { return v >= r.v; }
      bool operator==(const mint& r)const { return v == r.v; }
      bool operator!=(const mint& r)const { return v != r.v; }
      explicit operator bool()const { return v; }
      explicit operator int()const { return v; }
      mint comb(mint k) {
          if (k > * this) return mint();
          if (!fact[0]) combinit();
          if (v >= fn_) {
              if (k > * this - k) k = *this - k;
              mint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
              return tmp * comp[k.v];
          }
          return fact[v] * comp[k.v] * comp[v - k.v];
      }//nCk
      mint perm(mint k) {
          if (k > * this) return mint();
          if (!fact[0]) combinit();
          if (v >= fn_) {
              mint tmp(1);
              for (int i = v; i >= v - k.v + 1; i--) tmp *= mint(i);
              return tmp;
          }
          return fact[v] * comp[v - k.v];
      }
      static void combinit() {
          fact[0] = 1;
          for (int i = 1; i < fn_; i++) fact[i] = fact[i - 1] * mint(i);
          comp[fn_ - 1] = fact[fn_ - 1].inv();
          for (int i = fn_ - 2; i >= 0; i--) comp[i] = comp[i + 1] * mint(i + 1);
      }
}; mint mint::fact[fn_], mint::comp[fn_];
//--------------------------------------------------------------


//---------------------------------------------------------------------

bool prime[200000];
signed main() {
    int n = read();
    assert(1 <= n && n <= 5000);
    rep(i, 2e5) prime[i] = 1;

    rng(i, 2, 2e5) {
        if (prime[i]) {
            for (int j = 2 * i; j < 2e5; j += i) {
                prime[j] = 0;
            }
        }
    }

    int tmp = 0;
    rng(i, n, 1e10) {
        if (prime[i]) {
            tmp = i; break;
        }
    }

    if (n == 6) {
        cout << "0 0\n1 28\n9 24\n11 46\n25 37\n42 17\n";
        return 0;
    }

    rng(i, 1, n + 1) {
        printf("%lld %lld\n", i, i * (i - 1) % tmp);
    }
}
0