結果

問題 No.1112 冥界の音楽
ユーザー firiexpfiriexp
提出日時 2020-07-10 21:44:46
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 4,727 bytes
コンパイル時間 810 ms
コンパイル使用メモリ 92,224 KB
最終ジャッジ日時 2024-11-15 04:51:49
合計ジャッジ時間 1,397 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
main.cpp: In instantiation of 'struct SquareMatrix<SemiRing, 36>':
main.cpp:145:9:   required from here
main.cpp:58:9: error: 'SquareMatrix<H, SIZE>::A' has incomplete type
   58 |     mat A;
      |         ^
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63,
                 from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61,
                 from main.cpp:3:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<modint<1000000007>, 36>, 36>' {aka 'struct std::array<std::array<modint<1000000007>, 36>, 36>'}
 1595 |   template<typename _Tp, size_t _Nm> struct array;
      |                                             ^~~~~
main.cpp: In function 'int main()':
main.cpp:150:17: error: no match for 'operator[]' (operand types are 'SquareMatrix<SemiRing, 36>::ar' {aka 'std::array<modint<1000000007>, 36>'} and 'll' {aka 'long long int'})
  150 |         A[p*k+q][q*k+r] = 1;
      |                 ^
main.cpp:152:8: error: aggregate 'ar X' has incomplete type and cannot be defined
  152 |     ar X;
      |        ^

ソースコード

diff #

#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>

static const int MOD = 1000000007;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;

template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;

template<u32 M = 1000000007>
struct modint{
    u32 val;
    modint(): val(0){}
    template<typename T>
    modint(T t){t %= (T)M; if(t < 0) t += (T)M; val = t;}

    modint pow(ll k) const {
        modint res(1), x(val);
        while(k){
            if(k&1) res *= x;
            x *= x;
            k >>= 1;
        }
        return res;
    }
    template<typename T>
    modint& operator=(T t){t %= (T)M; if(t < 0) t += (T)M; val = t; return *this;}
    modint inv() const {return pow(M-2);}
    modint& operator+=(modint a){val += a.val; if(val >= M) val -= M; return *this;}
    modint& operator-=(modint a){if(val < a.val) val += M-a.val; else val -= a.val; return *this;}
    modint& operator*=(modint a){val = (u64)val*a.val%M; return *this;}
    modint& operator/=(modint a){return (*this) *= a.inv();}
    modint operator+(modint a) const {return modint(val) +=a;}
    modint operator-(modint a) const {return modint(val) -=a;}
    modint operator*(modint a) const {return modint(val) *=a;}
    modint operator/(modint a) const {return modint(val) /=a;}
    modint operator-(){return modint(M-val);}
    bool operator==(const modint a) const {return val == a.val;}
    bool operator!=(const modint a) const {return val != a.val;}
    bool operator<(const modint a) const {return val < a.val;}
};
using mint = modint<MOD>;

template<class H, size_t SIZE>
struct SquareMatrix {
    using T = typename H::T;
    using ar = array<T, SIZE>;
    using mat = array<ar, SIZE>;
    mat A;
    SquareMatrix() = default;
    static SquareMatrix I(){
        SquareMatrix X{};
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                if(i == j) X[i][j] = H::one();
                else X[i][j] = H::zero();
            }
        }
        return X;
    }

    friend ar operator*=(ar &x, const SquareMatrix &Y) {
        ar ans{};
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                 H::add(ans[j], H::mul(x[i], Y[i][j]));
            }
        }
        x.swap(ans);
        return x;
    }
    friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; }

    inline const ar &operator[](int k) const{ return (A.at(k)); }
    inline ar &operator[](int k) { return (A.at(k)); }
    SquareMatrix &operator+= (const SquareMatrix &B){
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                H::add((*this)[i][j], B[i][j]);
            }
        }
        return (*this);
    }

    SquareMatrix &operator-= (const SquareMatrix &B){
        for (int i = 0; i < SIZE; ++i) {
            for (int j = 0; j < SIZE; ++j) {
                H::add((*this)[i][j], -B[i][j]);
            }
        }
        return (*this);
    }

    SquareMatrix &operator*=(const SquareMatrix &B) {
        SquareMatrix C{};
        for (int i = 0; i < SIZE; ++i) {
            for (int k = 0; k < SIZE; ++k) {
                for (int j = 0; j < SIZE; ++j) {
                    H::add(C[i][j],  H::mul((*this)[i][k], B[k][j]));
                }
            }
        }
        A.swap(C.A);
        return (*this);
    }

    SquareMatrix pow(ll n) const {
        SquareMatrix a = (*this), res = I();
        while(n > 0){
            if(n & 1) res *= a;
            a *= a;
            n >>= 1;
        }
        return res;
    }
    SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}
    SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}
    SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}
};

struct SemiRing {
    using T = mint;
    static inline T mul(T x, T y){ return x * y; }
    static inline void add(T &x, T y){ x += y; }
    static inline T one(){ return {1}; }
    static inline T zero(){ return {0}; }
};

using ar = array<SemiRing::T, 36>;
using mat = SquareMatrix<SemiRing, 36>;


int main() {
    ll  k, m, n;
    cin >> k >> m >> n;
    mat A;
    for (int i = 0; i < m; ++i) {
        int p, q, r;
        cin >> p >> q >> r;
        p--; q--; r--;
        A[p*k+q][q*k+r] = 1;
    }
    ar X;
    for (int i = 0; i < k; ++i) {
        X[i] = 1;
    }
    X *= A.pow(n-2);
    mint ans = 0;
    for (int i = 0; i < k; ++i) {
        ans += X[k*i];
    }
    cout << ans.val << "\n";
    return 0;
}
0