結果
問題 | No.1112 冥界の音楽 |
ユーザー | firiexp |
提出日時 | 2020-07-10 21:44:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 4,727 bytes |
コンパイル時間 | 810 ms |
コンパイル使用メモリ | 92,224 KB |
最終ジャッジ日時 | 2024-11-15 04:51:49 |
合計ジャッジ時間 | 1,397 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of 'struct SquareMatrix<SemiRing, 36>': main.cpp:145:9: required from here main.cpp:58:9: error: 'SquareMatrix<H, SIZE>::A' has incomplete type 58 | mat A; | ^ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_map.h:63, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/map:61, from main.cpp:3: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/tuple:1595:45: note: declaration of 'using mat = struct std::array<std::array<modint<1000000007>, 36>, 36>' {aka 'struct std::array<std::array<modint<1000000007>, 36>, 36>'} 1595 | template<typename _Tp, size_t _Nm> struct array; | ^~~~~ main.cpp: In function 'int main()': main.cpp:150:17: error: no match for 'operator[]' (operand types are 'SquareMatrix<SemiRing, 36>::ar' {aka 'std::array<modint<1000000007>, 36>'} and 'll' {aka 'long long int'}) 150 | A[p*k+q][q*k+r] = 1; | ^ main.cpp:152:8: error: aggregate 'ar X' has incomplete type and cannot be defined 152 | ar X; | ^
ソースコード
#include <iostream> #include <algorithm> #include <map> #include <set> #include <queue> #include <stack> #include <numeric> #include <bitset> #include <cmath> static const int MOD = 1000000007; using ll = long long; using u32 = unsigned; using u64 = unsigned long long; using namespace std; template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208; template<u32 M = 1000000007> struct modint{ u32 val; modint(): val(0){} template<typename T> modint(T t){t %= (T)M; if(t < 0) t += (T)M; val = t;} modint pow(ll k) const { modint res(1), x(val); while(k){ if(k&1) res *= x; x *= x; k >>= 1; } return res; } template<typename T> modint& operator=(T t){t %= (T)M; if(t < 0) t += (T)M; val = t; return *this;} modint inv() const {return pow(M-2);} modint& operator+=(modint a){val += a.val; if(val >= M) val -= M; return *this;} modint& operator-=(modint a){if(val < a.val) val += M-a.val; else val -= a.val; return *this;} modint& operator*=(modint a){val = (u64)val*a.val%M; return *this;} modint& operator/=(modint a){return (*this) *= a.inv();} modint operator+(modint a) const {return modint(val) +=a;} modint operator-(modint a) const {return modint(val) -=a;} modint operator*(modint a) const {return modint(val) *=a;} modint operator/(modint a) const {return modint(val) /=a;} modint operator-(){return modint(M-val);} bool operator==(const modint a) const {return val == a.val;} bool operator!=(const modint a) const {return val != a.val;} bool operator<(const modint a) const {return val < a.val;} }; using mint = modint<MOD>; template<class H, size_t SIZE> struct SquareMatrix { using T = typename H::T; using ar = array<T, SIZE>; using mat = array<ar, SIZE>; mat A; SquareMatrix() = default; static SquareMatrix I(){ SquareMatrix X{}; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { if(i == j) X[i][j] = H::one(); else X[i][j] = H::zero(); } } return X; } friend ar operator*=(ar &x, const SquareMatrix &Y) { ar ans{}; for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add(ans[j], H::mul(x[i], Y[i][j])); } } x.swap(ans); return x; } friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; } inline const ar &operator[](int k) const{ return (A.at(k)); } inline ar &operator[](int k) { return (A.at(k)); } SquareMatrix &operator+= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add((*this)[i][j], B[i][j]); } } return (*this); } SquareMatrix &operator-= (const SquareMatrix &B){ for (int i = 0; i < SIZE; ++i) { for (int j = 0; j < SIZE; ++j) { H::add((*this)[i][j], -B[i][j]); } } return (*this); } SquareMatrix &operator*=(const SquareMatrix &B) { SquareMatrix C{}; for (int i = 0; i < SIZE; ++i) { for (int k = 0; k < SIZE; ++k) { for (int j = 0; j < SIZE; ++j) { H::add(C[i][j], H::mul((*this)[i][k], B[k][j])); } } } A.swap(C.A); return (*this); } SquareMatrix pow(ll n) const { SquareMatrix a = (*this), res = I(); while(n > 0){ if(n & 1) res *= a; a *= a; n >>= 1; } return res; } SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;} SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;} SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;} }; struct SemiRing { using T = mint; static inline T mul(T x, T y){ return x * y; } static inline void add(T &x, T y){ x += y; } static inline T one(){ return {1}; } static inline T zero(){ return {0}; } }; using ar = array<SemiRing::T, 36>; using mat = SquareMatrix<SemiRing, 36>; int main() { ll k, m, n; cin >> k >> m >> n; mat A; for (int i = 0; i < m; ++i) { int p, q, r; cin >> p >> q >> r; p--; q--; r--; A[p*k+q][q*k+r] = 1; } ar X; for (int i = 0; i < k; ++i) { X[i] = 1; } X *= A.pow(n-2); mint ans = 0; for (int i = 0; i < k; ++i) { ans += X[k*i]; } cout << ans.val << "\n"; return 0; }