結果
| 問題 |
No.1112 冥界の音楽
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-07-10 21:44:46 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,727 bytes |
| コンパイル時間 | 689 ms |
| コンパイル使用メモリ | 89,420 KB |
| 最終ジャッジ日時 | 2025-01-11 18:14:19 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of ‘struct SquareMatrix<SemiRing, 36>’:
main.cpp:145:9: required from here
main.cpp:58:9: error: ‘SquareMatrix<H, SIZE>::A’ has incomplete type
58 | mat A;
| ^
In file included from /usr/include/c++/13/bits/memory_resource.h:47,
from /usr/include/c++/13/string:58,
from /usr/include/c++/13/bits/locale_classes.h:40,
from /usr/include/c++/13/bits/ios_base.h:41,
from /usr/include/c++/13/ios:44,
from /usr/include/c++/13/ostream:40,
from /usr/include/c++/13/iostream:41,
from main.cpp:1:
/usr/include/c++/13/tuple:2019:45: note: declaration of ‘using SquareMatrix<SemiRing, 36>::mat = struct std::array<std::array<modint<1000000007>, 36>, 36>’ {aka ‘struct std::array<std::array<modint<1000000007>, 36>, 36>’}
2019 | template<typename _Tp, size_t _Nm> struct array;
| ^~~~~
main.cpp: In function ‘int main()’:
main.cpp:150:17: error: no match for ‘operator[]’ (operand types are ‘SquareMatrix<SemiRing, 36>::ar’ {aka ‘std::array<modint<1000000007>, 36>’} and ‘ll’ {aka ‘long long int’})
150 | A[p*k+q][q*k+r] = 1;
| ^
main.cpp:152:8: error: aggregate ‘ar X’ has incomplete type and cannot be defined
152 | ar X;
| ^
ソースコード
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <numeric>
#include <bitset>
#include <cmath>
static const int MOD = 1000000007;
using ll = long long;
using u32 = unsigned;
using u64 = unsigned long long;
using namespace std;
template<class T> constexpr T INF = ::numeric_limits<T>::max()/32*15+208;
template<u32 M = 1000000007>
struct modint{
u32 val;
modint(): val(0){}
template<typename T>
modint(T t){t %= (T)M; if(t < 0) t += (T)M; val = t;}
modint pow(ll k) const {
modint res(1), x(val);
while(k){
if(k&1) res *= x;
x *= x;
k >>= 1;
}
return res;
}
template<typename T>
modint& operator=(T t){t %= (T)M; if(t < 0) t += (T)M; val = t; return *this;}
modint inv() const {return pow(M-2);}
modint& operator+=(modint a){val += a.val; if(val >= M) val -= M; return *this;}
modint& operator-=(modint a){if(val < a.val) val += M-a.val; else val -= a.val; return *this;}
modint& operator*=(modint a){val = (u64)val*a.val%M; return *this;}
modint& operator/=(modint a){return (*this) *= a.inv();}
modint operator+(modint a) const {return modint(val) +=a;}
modint operator-(modint a) const {return modint(val) -=a;}
modint operator*(modint a) const {return modint(val) *=a;}
modint operator/(modint a) const {return modint(val) /=a;}
modint operator-(){return modint(M-val);}
bool operator==(const modint a) const {return val == a.val;}
bool operator!=(const modint a) const {return val != a.val;}
bool operator<(const modint a) const {return val < a.val;}
};
using mint = modint<MOD>;
template<class H, size_t SIZE>
struct SquareMatrix {
using T = typename H::T;
using ar = array<T, SIZE>;
using mat = array<ar, SIZE>;
mat A;
SquareMatrix() = default;
static SquareMatrix I(){
SquareMatrix X{};
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
if(i == j) X[i][j] = H::one();
else X[i][j] = H::zero();
}
}
return X;
}
friend ar operator*=(ar &x, const SquareMatrix &Y) {
ar ans{};
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add(ans[j], H::mul(x[i], Y[i][j]));
}
}
x.swap(ans);
return x;
}
friend ar operator*(ar x, const SquareMatrix &Y) { return x *= Y; }
inline const ar &operator[](int k) const{ return (A.at(k)); }
inline ar &operator[](int k) { return (A.at(k)); }
SquareMatrix &operator+= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add((*this)[i][j], B[i][j]);
}
}
return (*this);
}
SquareMatrix &operator-= (const SquareMatrix &B){
for (int i = 0; i < SIZE; ++i) {
for (int j = 0; j < SIZE; ++j) {
H::add((*this)[i][j], -B[i][j]);
}
}
return (*this);
}
SquareMatrix &operator*=(const SquareMatrix &B) {
SquareMatrix C{};
for (int i = 0; i < SIZE; ++i) {
for (int k = 0; k < SIZE; ++k) {
for (int j = 0; j < SIZE; ++j) {
H::add(C[i][j], H::mul((*this)[i][k], B[k][j]));
}
}
}
A.swap(C.A);
return (*this);
}
SquareMatrix pow(ll n) const {
SquareMatrix a = (*this), res = I();
while(n > 0){
if(n & 1) res *= a;
a *= a;
n >>= 1;
}
return res;
}
SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}
SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}
SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}
};
struct SemiRing {
using T = mint;
static inline T mul(T x, T y){ return x * y; }
static inline void add(T &x, T y){ x += y; }
static inline T one(){ return {1}; }
static inline T zero(){ return {0}; }
};
using ar = array<SemiRing::T, 36>;
using mat = SquareMatrix<SemiRing, 36>;
int main() {
ll k, m, n;
cin >> k >> m >> n;
mat A;
for (int i = 0; i < m; ++i) {
int p, q, r;
cin >> p >> q >> r;
p--; q--; r--;
A[p*k+q][q*k+r] = 1;
}
ar X;
for (int i = 0; i < k; ++i) {
X[i] = 1;
}
X *= A.pow(n-2);
mint ans = 0;
for (int i = 0; i < k; ++i) {
ans += X[k*i];
}
cout << ans.val << "\n";
return 0;
}